Best Management and Technical Practices for Site Assessment and Remediation

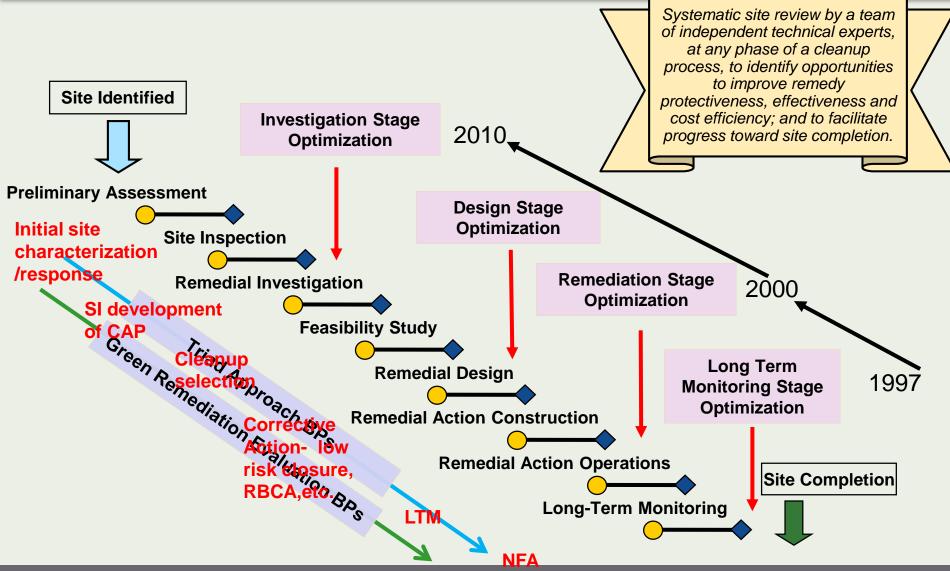
Stephen Dyment US EPA Office of Research and Development Superfund and Technology Liaison

Framing the Challenge

UST Universe- As of EOY FY2015

- » 565,956 federally regulated USTs at 204,000 sites
- » 528,521 releases reported- 456,660 cleanups
- » 71,861 remaining to cleanup
 - › Limited funding
 - > Many complex sites
 - Remediation systems in place

Superfund Optimization Experience


- ◆ 20 years, 200+ sites
- Common challenges lead to identification of BMPs

Montana DEQ training experience 2012

UST/LUST site complexity- perceptions

History of EPA Superfund Optimization Program

www.epa.gov/superfund/cleanup/postconstruction/optimize.htm www.cluin.org/optimization/

Optimization Review Process Regional/HQ/Other Request for Optimization Project Scoping and Kick-off Call Document Exchange, Data Review and Evaluation Site Visit/Stakeholder Interviews Draft Report/Region Review/Comments Response Final Report/Post on CLU-IN Recommendation Implementation Tracking

Optimization Characterization Phase Typical Findings/ Recommendations

- 1. Low density/high uncertainty
- 2. CSM out of date or underdeveloped
- 3. Existing data not fully leveraged
- 4. Over-reliance on high cost traditional methods
- 5. Scale of measurements not sufficient for heterogeneity
- End data users not adequately considered

Optimization Design/Remedy Phase Typical Findings/ Recommendations

- 1. Gaps in CSM
- 2. Shortcomings in modeling
- 3. Unaddressed issues in design
- 4. High cost estimates
- Remedy effectiveness can be improved by conducting phases
- 6. Explanations for uncertainties can become apparent during start-up
- 7. Can confirm validity of current site plans and progress

Optimization Support in Superfund Completed Events 1997-2016

	Ev	ents/Regi	Total Events	% per		
Region	1997- 2010	2011- 2015	2016 to Date	1997 to Date		
1	10	7	4	21	10%	
2	12	12	1	25	12%	
3	18	6	1	25	12%	
4	11	1	0	12	6%	
5	12	4	0	16	8%	
6	5	11	0	16	8%	
7	6	13	0	19	9%	
8	4	11	2	17	8%	
9	6	20	1	27	13%	
10	10	14	1	25	12%	
Total	94	99	10	203	100%	

Optimization Long term O&M Phases Typical Findings/ Recommendations

- 1. CSM needs update
 - a) Sources
 - b) Low/ high permeability zones
 - c) NAPL
- 2. Endpoint and metrics for site completion need better definition
- 3. Need for improved data management, analysis and reporting
 - a) Tracking/reporting performance
 - b) Spatial/temporal data
 - c) Historic data (paper \rightarrow electronic)

Recent Optimization Experiences in the Tanks Universe

7 LUST sites

General observations

- » Voluntarily nominated sites for third-party evaluation based on site complexity and persistent barriers to closure
- » Source area remedial activities, such as SVE, UST removal and excavation significantly reduced impacts at sites
- » Issues associated with the location of remedial systems installed by others were promptly recognized and managed

Observations from desktop and full reviews

- » Technical decisions typically made based on funding rather than stepwise approach to assess receptors and implement closure strategy
 - > Observed outcomes:
 - Imprecise or uncertain CSMs
 - No fully defined closure strategy
 - Potential receptors not fully evaluated or monitored
 - Insufficient remedial system functionality, efficiency, effectiveness towards site closure or...
 - Inadequate monitoring to evaluate metrics

Recent Optimization Experiences in the Tanks Universe

Examples of Observed outcomes

- » Imprecise or uncertain CSMs
 - Multiple sites should consider potential for submerged LNAPL
 - Additional plume delineation recommended at 6 of 7 sites
- » Closure Strategy
 - Goal of remediation was uncertain at some sites
 - Long-term plume management or aggressive soil/aquifer restoration
- » Receptors
 - Multiple sites need additional information on public supply and private drinking wells
 - Some sites require more thorough investigation of VI pathway due to magnitude and proximity to receptors
 - Additional identification and evaluation of receptors required

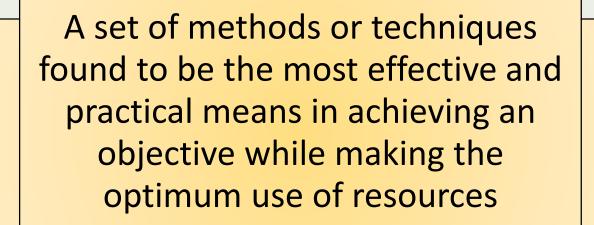
Examples of Observed outcomes

- » Remediation system performance, metrics/monitoring
 - Some sites had significant resource expenditures and investment in P&T systems that did not function appropriately
 - At one site a technology (deemed problematic by the optimization team) was piloted and yielded inconclusive results
 - At multiple sites injected mixture of surfactants and persulfate which did not enhance NAPL recovery
 - At one site reinjection of treated water caused mounding and NAPL spreading

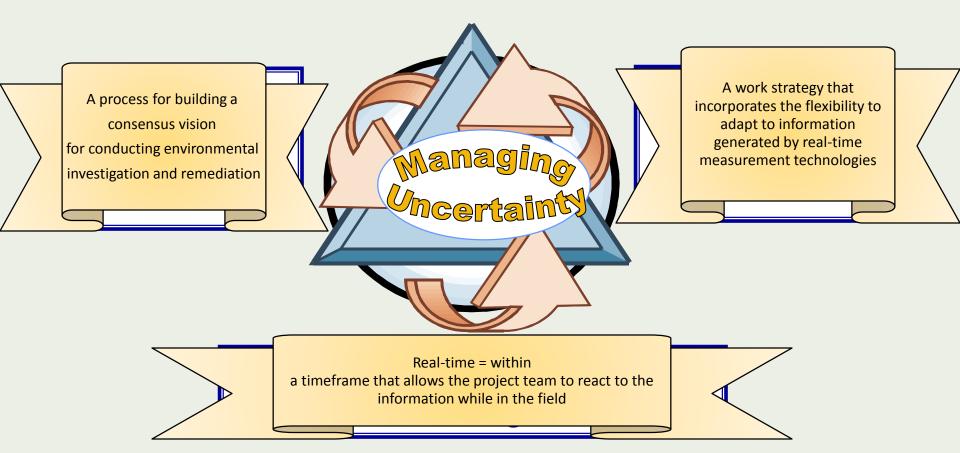
Cost Considerations For Optimization Reviews

TIFSD housed in the SF program but...

- » Operate Brownfields Technical Support Center
- » Provide technical support at UST sites, corridors, pilots
- » State training


Regional concerns about cost of recommendations

- » Encourage organizations to look at life cycle costs
- » Recommendations prioritized and can be phased
- » Cost of investigation vs. remediation
- » SF, BF, UST, RCRA experience- P&T neither cheap nor fast



What are BMPs?

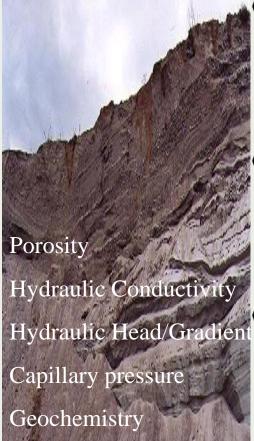
The Triad Approach – Source of Many BMPs

Synthesizes practitioner experience, successes, and lessons learned into an institutional framework

Common Triad Related BMPs and Recent Program/Process Revelations in SF Remedial

Data management

- Historically reports as mechanism to exchange information, now data as deliverable, active data management
- Data warehouse, data interoperability, economies of scale


High Resolution Site Characterization

- Direct sensing tools, scale appropriate measurements
- Collaborative data approaches

Real-time data visualization

Conceptual Site Model (CSM) lifecycle management

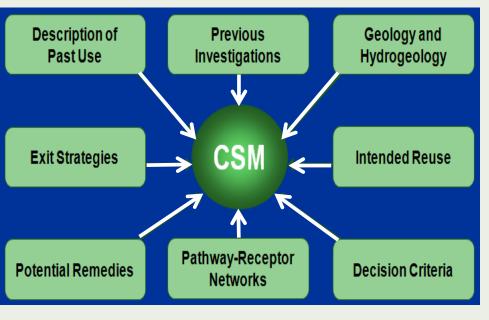
Recent Experience Leads to New Thinking for Media Too

Historical perspective

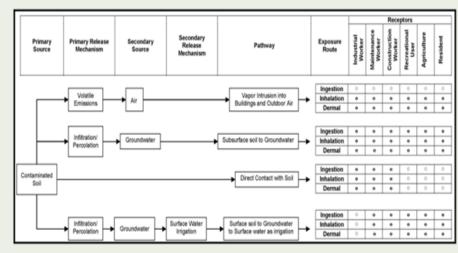
- » Soil- EPA Superfund has historically focused on high quality analytical samples collected at discrete soil locations
- » Groundwater- EPA has historically used monitoring wells, pump tests, etc. to characterize and monitor sites

Challenges encountered

- » Discrete soil sampling designs do not address matrix variability/heterogeneityresulting in highly variable or statistically uncertain decision making
- » Large scale averages of aquifer materials obscure primary contaminant transport and mass storage areas


New thinking

- » Soil- Incremental and composite techniques that provide large scale averages are better suited to represent exposure scenarios, control matrix variability/ sample heterogeneity, and make statistically confident decisions
- » Groundwater- large scale averages derived from aquifer materials can be misleading resulting in poorly performing or applied remedies. HRSC techniques provide measurements at scales more appropriate for remedy design.


The CSM is Critical Regardless of Regulatory Framework

- Written and graphical expression of site knowledge
- Primary basis for project design and execution
- Updated throughout project life cycle
- Essential to successful projects

Primary Anatomy of a CSM

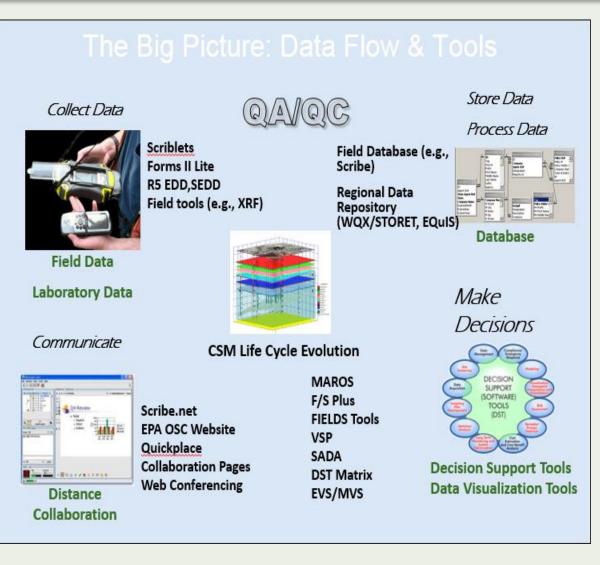
- P-RN diagrams are NOT FULL CSMs too simple to serve all CSM functions
- However, they are a critical COMPONENT of CSMs

- CSM should incorporate all actual and potential P-RNs
- Investigation efforts confirm or refute each element of P-RNs

Project Life Cycle CSM Supports Project Phases

Environmental Cleanup Best Management Practices: Effective Use Of The Project Life Cycle Conceptual Site Model. EPA 542-F-11-011

General Environmental Cleanup Steps	CSM Life Cycle	Best Management Practices SPP DWS/ RTMT	CERCLA - Superfund	RCRA	Brownfields	UST	VCUP Varies by State	IRP/ERP	MMRP
Site Assessment	Preliminary CSM Preliminary CSM Baseline CSM		Preliminary Assessment (PA) Site Inspection (SI) National Priorities List (NPL) No Further Remedial Action Planned (NFRAP)	Facility Assessment (RFA)	Phase I Environmental Site Assessment (ESA)	Initial Site Characterization Initial Response	PA SI	PA SI	PA SI MR Site Prioritization Protocol (MRSPP)
SITE INVESTIGATION AND ALTERNATIVES EVALUATION	Characterization CSM Stage	Y	Remedial Investigation/ Feasibility Study (RI/FS) Removal Actions - Emergency/ Time Critical/Non-Time-Critical	Facility Investigation (RFI) Corrective Measures Study (CMS)	Phase II ESA	SI Corrective Action Plan (CAP)	RI/FS	RI/FS NFRAP	RI/FS
Remedy Selection	Design CSM Stage		Proposed Plan Record of Decision (ROD)	Statement of Basis (SB) Final Decision and Response to Comments	Remedial Action Plan (RAP)	Cleanup Selection	ROD	Proposed Plan ROD	Remedy Selection
Remedy Implementation	Remediation/ Mitigation CSM Stage		Remedial Design (RD) Remedial Action (RA) – Interim and Final	Corrective Measure Implementation (CMI)	Cleanup and Development	Corrective Action - Low-impact site cleanup - Risk-based remediation - Generic remedies - Soil matrix cleanup	RD RA	RD RA – Interim and Final Remedy in Place (RIP)	RD Time Critical Removal Action (TCRA) RA RIP
Post- Construction Activities	Post-Remedy CSM Stage	V	Operational & Functional Period Operation & Maintenance (O&M) Long term monitoring (LTM) Optimization Long Term Response Action (Fund-lead groundwater/surface water restoration)	O&M On-site inspections and oversight	Property Management Long-term O&M Redevelopment Activities (Private- and Public-led)	LTM	O&M LTM	Shakedown period Operating Properly and Successfully O&M LTM	Shakedown period Long Term Management
SITE COMPLETION	Quantitative	V	Construction Complete (CC) Preliminary or Final Close Out Report (PCOR/FCOR) Site Completion - FCOR Site Deletion O&M as appropriate	Certification of Completion Corrective Action Complete with Controls or without Controls	CC Property Management	No Further Action (NFA)	СС	Response Complete (RC) NFA	RC NFA


SPP = Systematic Project Planning DWS = Dynamic Work Strategies

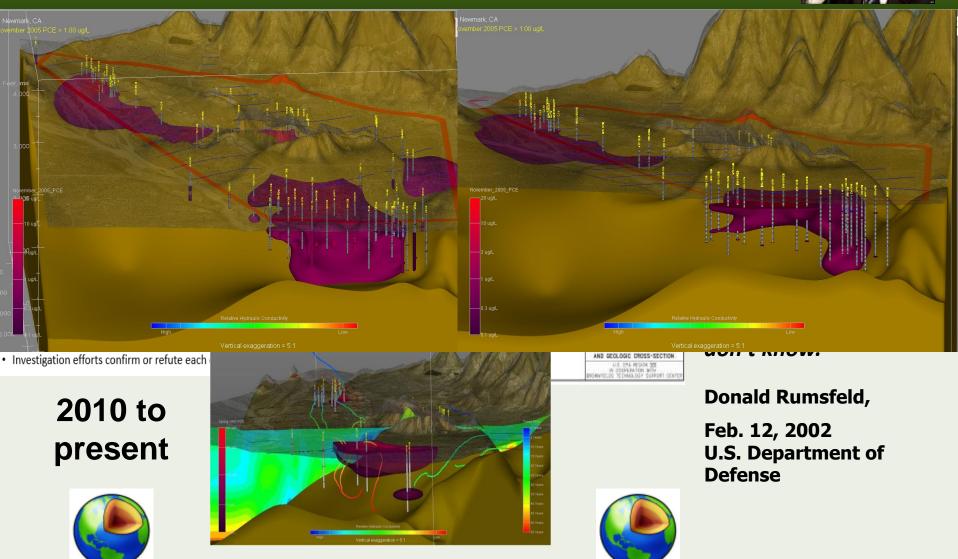
RTMT = Real Time Measurement Technologies

CERCLA = Comprehensive Environmental Response, Compensation and Liability Act RCRA = Resource Conservation and Recovery Act UST = Underground Storage Tanks VCUP = Voluntarily Clean Up Programs IRP/ERP = Installation Restoration Program/ Environmental Restoration Program MMRP = Military Munitions Response Program

Data Management is Key Plans required-Region, Site, Project

Data acquisition

- Occurs quickly, involves large amounts of data
- Data must be integrated into CSM quickly to inform continued data acquisition while mobilized


• Data input

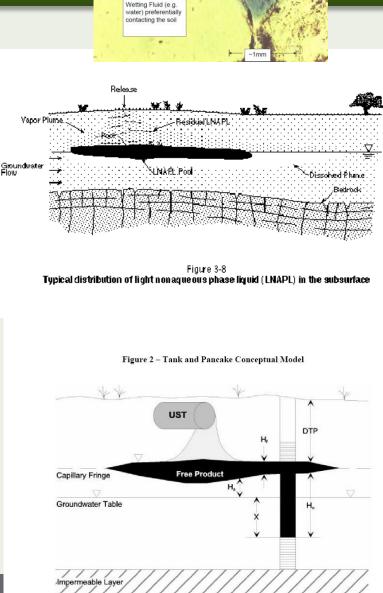
- Automatic/manual systems to QC at point of generation accurately transfer to databases
- Decision Support
 - Statistical, visualization, modeling
- Communicate
 - Force interpretation, compress timeframes

Data Management Leads to a Robust Conceptual Site Model

Death of the Pancake Model

Soil Grains Wetling Fluid (e.g. water) preferentially contacting the soil

Bad news...


- » LNAPL body structure can be complex
- » Sometimes measurable LNAPL never enters monitoring wells
- » Even purposely screened within/across the LNAPL body, and after years of monitoring.

Good news...

- » Mobile LNAPL remarkably stable if prevailing hydraulic conditions maintained
- » The geometry and structure of the LNAPL body can be reliably mapped
- » Allows near-surgical precision for remediation targeting

So now what?

- » Remediation strategy based on LNAPL as the source of dissolved phase COCs versus LNAPL migration risk
- » Enter risk based corrective action, petroleum mixing zones, low risk closures

A Few Notes On NAPL Actual versus Apparent LNAPL Thickness

Observed LNAPL well thickness

- » LNAPL inside/outside of wells not always in equilibrium
- » Inconsistencies between soil types
- » Changes with water elevation fluctuations
- Impacted by hydraulic scenarios (unconfined, confined, perched groundwater conditions)
- » Poor indicator of LNAPL presence and recoverability
 - > Transmissivity gaining in use and acceptance

Determine actual thickness using well baildown tests

- » Modified aquifer slug test solutions for K_o (Bower & Rice)
- » K_o estimated from changes in oil thickness (Lundy & Zimmerman)
- » K_w estimated from rising water table (Lundy & Zimmerman)
- » K_o estimated from recovery of the oil table (Huntley)

Source: Parcher, Unknown

EPA 510-R-15-001 Technical Guide For Addressing Petroleum Vapor Intrusion At Leaking Underground Storage Tank Sites

Recommended Actions

- » Assess/mitigate immediate threats to safety –Sec 1 (p.11)
- » Conduct a site characterization and develop a conceptual site model (CSM) see Section 3 (p.39)
- » Delineate a lateral inclusion zone see Section 4 (p.44)
- » Determine vertical separation distances for each building within the lateral inclusion zone – see Section 5 (p.48)
- » Evaluate vapor source and attenuation of PHC vapors see Section 5 (p.48), Section 8(p.66), Section 9 (p.75), Section 10 (p.81), Section 12 (p.100), and Section 13 (p.106)
- » Mitigate PVI, as appropriate see Section 1 (p.11)

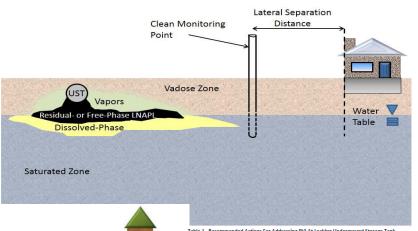
Challenging to Meet Recommended VI Actions in the Absence of HRSC Techniques, Tools, and Strategies (Table 1)

Conduct a site characterization and develop a conceptual site model (CSM)

Once the immediate threats to safety have been mitigated (or it is determined that immediate threats do not exist), determine whether there is a long-term threat to human health and the environment from intrusion of petroleum vapors. Site characterization²⁰ and CSM development provide information about the full extent and location of the contamination; the nature and characteristics of the contamination; the characteristics of the site that influence contaminant migration, including the potential for biodegradation of PHCs; and the locations of receptors. Information derived from the CSM helps ensure that sources, pathways, and receptors throughout the site are considered; this knowledge can lead to selection of the most appropriate sampling locations and techniques. A systematic soil gas sampling program may also aid in defining the full extent and locating pockets of PHC vapors. Preferential transport pathways, and locating pockets of PHC vapors. Preferential transport pathways are avenues of least resistance to the migration of contaminants whether in the dissolved phase, LNAPL phase, or vapor phase. They include both natural and man-made features such as:

Natural

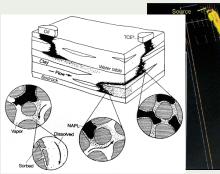
- gravel lenses and channels
- solution channels in karst terrain
- bedding planes
- fractures, joints, and faults in consolidated rock

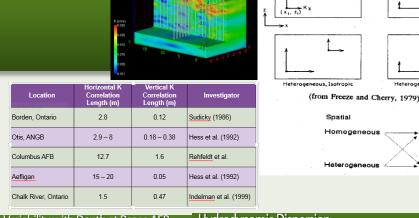

Man-made

- utility corridors (including sewer lines themselves) and trenches
- elevator pits
- sumps and drainage pits
- other types of excavations

²⁰The term site characterization is used throughout this document for consistency. Site characterization is often used interchangeably with site assessment, site evaluation, site investigation, and sometimes site check as they all mean assembling and collecting information and data about a site.

Page 18 of 123




			Table 1. Recommended Actions For Addressing PVI At Leaking Underground Storage Tank Sites			
			Recommended Actions	Purpose And Objectives	Procedures	
Vadose Zone	UST Vapors	26ft	Assess and mitigate immediate threats to safety (see Section 1, p.11)	identify potential threat of explosion or fire due to petroleum vapors or methane. Threat may be indicated by: • LNAPL visible in building, possibly as sheen in sump • Noticeable petroleum odor, headache, diziness, or nausea	 Investigate all reports of petroleum odors and other indicators within buildings Detection of the presence of methane; requires specialized devices Alert first responders so that they can, if necessary, evacuate building 	
	Residual- or Free-Phase LNAPL	Water V Table		 Atypical, unusual, or disagreeable taste or smell in the water supply NOTE: Methane cannot be detected on the basis of odor. Taste. or visible signs 	occupants as necessary until the potential for fire or explosion has been assessed and mitigated as needed	
Saturated Zone	Dissolved-Phase	Conduct a site characterization and develop conceptual site conceptual site model (CSM)		Characterize the physical, biological and chemical systems at the site, with emphasis on determining the spatial and temporal relationship between receptors and sources of contamination	Collect sufficient site data and information to construct CSM Identify data gaps Update CSM as new data become available Where preferential transport pathways	
			p.39)	contamination and its nature Assessing the potential for biodegradation of PHCs • Defining the hydrologic and geologic characteristics of the site • Identifying potential receptors in the vicinity • Identifying whether preferential transport pathways are present and connect PHC vapor sources with bootnial receptors. Preferential	connect PHC vapor sources to receptors (e.g., buildings), indoor air sampling paired with sub-slab vapor sampling is recommended	
	UST	≥ 15 ft		transport pathways include both natural (i.e., geologic) and man-made (i.e., underground utilities, excavations) features.		
Vadose Zone	Vapors	2.5%	Delineate a lateral inclusion zone (see Section 4, p.44)	Screen out buildings that are not likely to be impacted by PVI to narrow the investigation to only those buildings that have a greater potential for PVI and for which further investigation should be conducted. The lateral inclusion zone is site-specific and: • Based on the extent of contamination and	 Construct lateral inclusion zone based on distance between clean monitoring points (includes consideration of the presence of preferential transport pathways) 	
	Residual- or Free- Phase LNAPL	Water 💙		 Based on the extent of contamination and distance between clean monitoring points Decreases in extent as additional data are collected to reduce uncertainty in the CSM 		
Saturated Zone	Dissolved-P	Table 🗮	Determine vertical separation distances (see Section 5,	Further screen out buildings that are not likely to be impacted by PVI to focus the investigation on potential receptors that overlie contamination in the dissolved vapor, and/or LNAPL phase. The vertical separation distance is:	 For each building within the lateral inclusion zone, collect additional soil gas, soil, and groundwater samples as necessary to determine the vertical separation distance. Additional 	
Saturated Zone			(see section 5, p.48)	The thickness of clean, biologically-active soil	investigation is generally unnecessary	

Let's Start with Groundwater-Challenges, Strategies, and Tools

Challenges

- Heterogeneous, anisotropic conditions
- Hydraulic gradient-3 dimensional, temporal variation
- **Advection/Dispersion**
- **Contaminant phase**
 - NAPL (density, viscosity, mobility, dissolution)
 - Gas
 - Solute (dissolved)
 - Sorbed

ydraulic Gradient Variability with Depth at Pease AFB Site 32


uilding 113 Diamicton - 30 f

CM 322 Davs

Plan Section at 95 4m

- - Longitudinal dispersion is significant

Stanford-Waterloo Natural Gradient Tracer Tes

Layout, Water Resources Research, 1982

Directional

Isotropic


Anisotropic

Hydrodynamic Dispersion

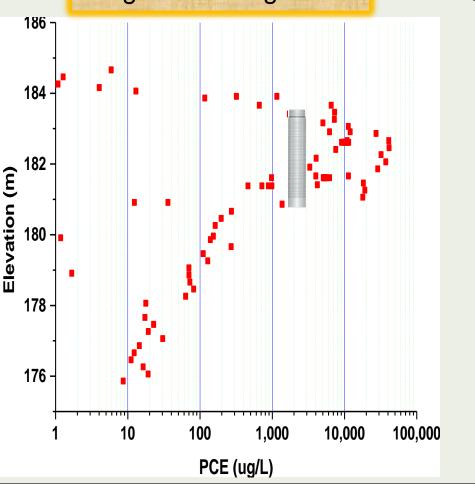
Natural Gradient Tracer Tests

- » Sudicky 1979
- » Stanford/Waterloo 1982
- » USGS Cape Cod 1986
- » Rivett et al. 1991
- Dispersion is scale (time/distance) dependent
- Transverse horizontal dispersion is weak
- Transverse vertical dispersion is even weaker

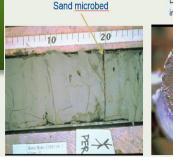
Let's Start with Groundwater-Challenges, Strategies, and Tools

Strategies*

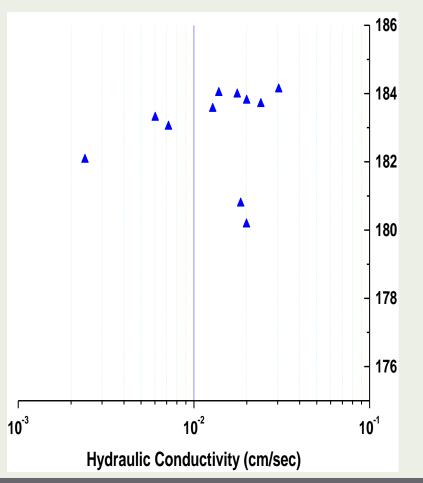
- Transects
- Vertical profiling
- HRSC, direct sensing
- Collaborative data sets
- Well placement, screen interval


<u>Tools</u>*

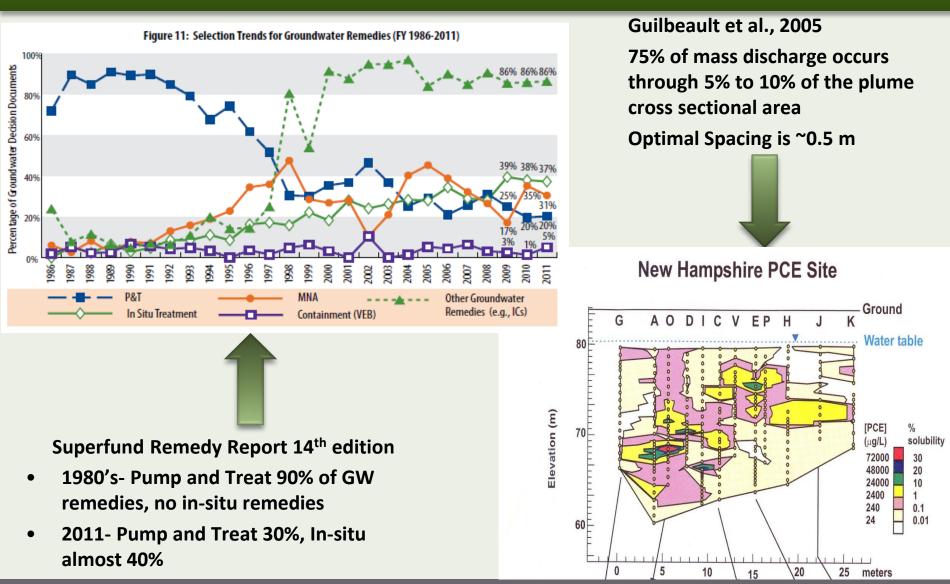
- Direct push
- Direct sensing- MIP, LIF, FFD
- Geophysical and geologic - CPT, EC, GPR, EM, resistivity
- Hydrostratigraphic
 - Waterloo APS, HPT, piezocone
- Soil gas
 - Passive, active

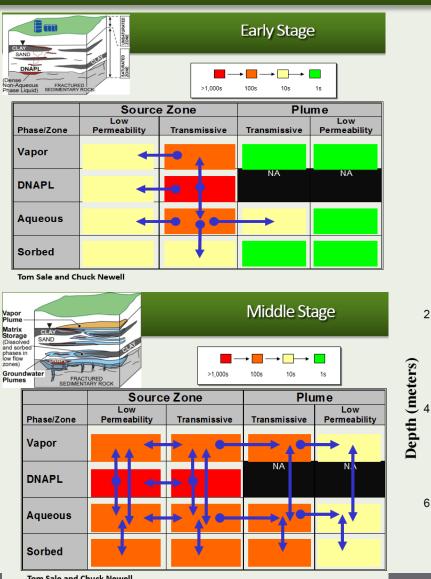


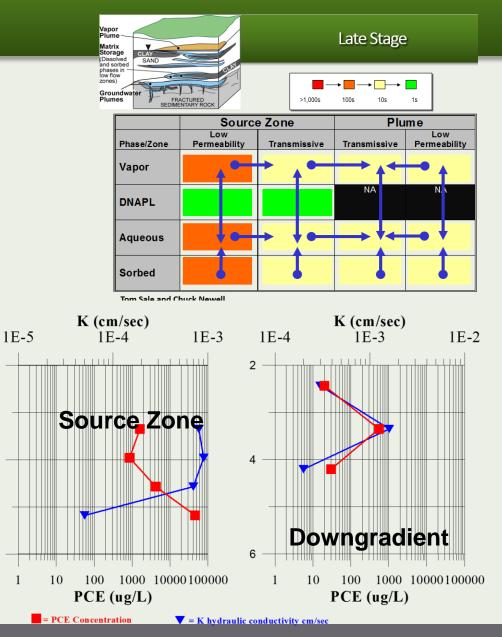
Sampling Scale and Averaging How "Well" Do You Know Your Site


Monitoring wells yield a depth integrated flow weighted average

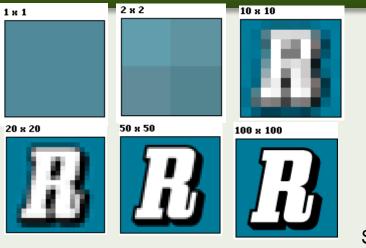
Structure and Pore Fluids Intact 9x9m Cell DNAPL Migration in Aquitard Microbeds

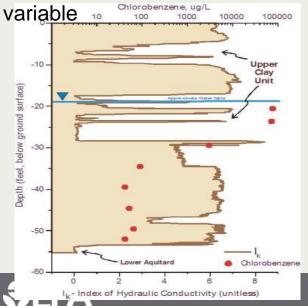



32-<u>2</u>3


Mass Flux Distribution- And The Rise of In-Situ Remedies

Spatial Variability In Flux..... But Also Temporal

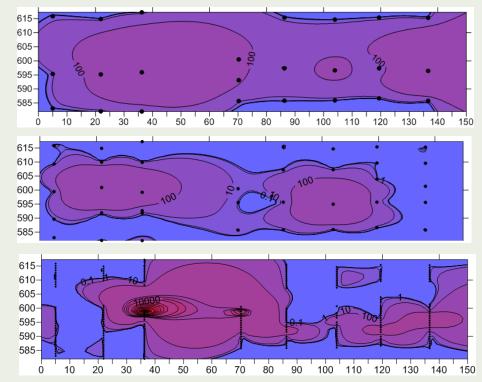



Tom Sale and Chuck Newell

How Much is Enough?

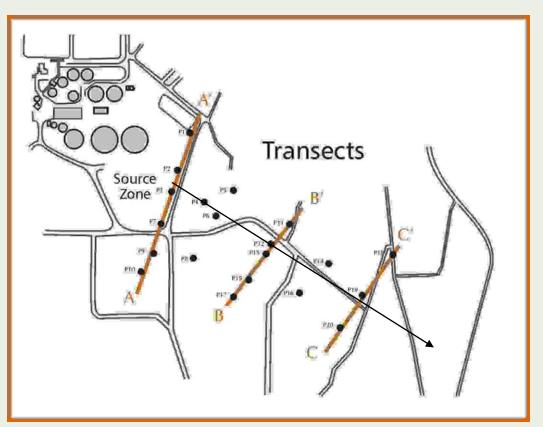
William Blake "You never know what is enough unless you know what is more than enough!"

With real-time or direct sensing spacing can be

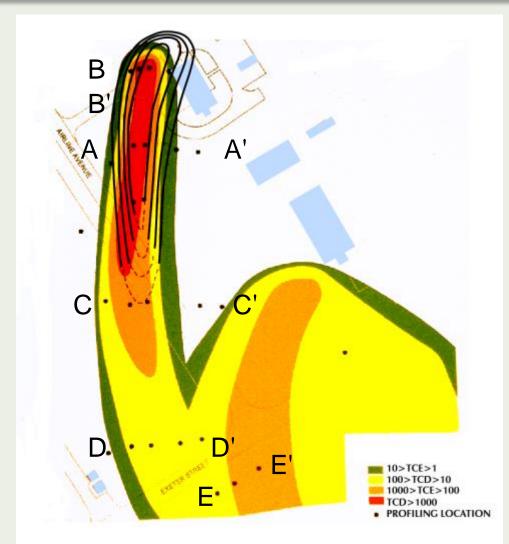


Shallow, medium, deep

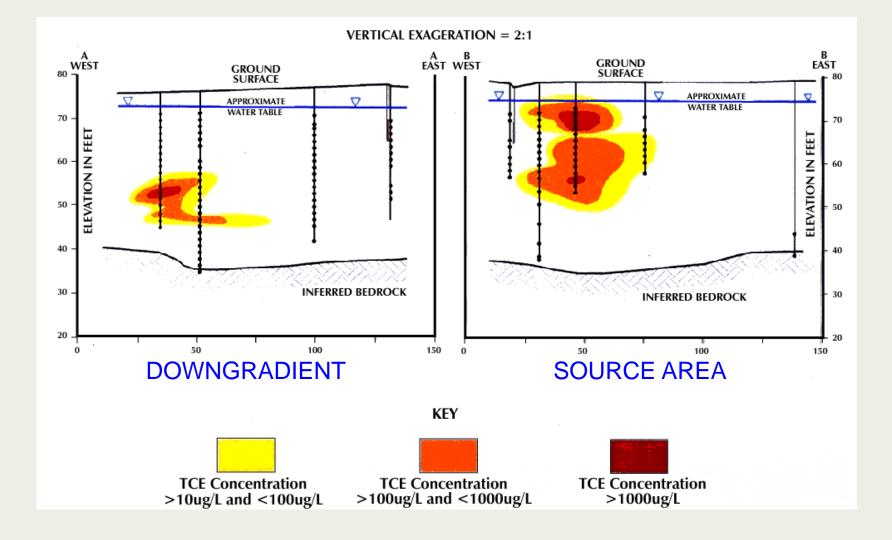
10-ft vertical spacing


0.8-ft vertical spacing

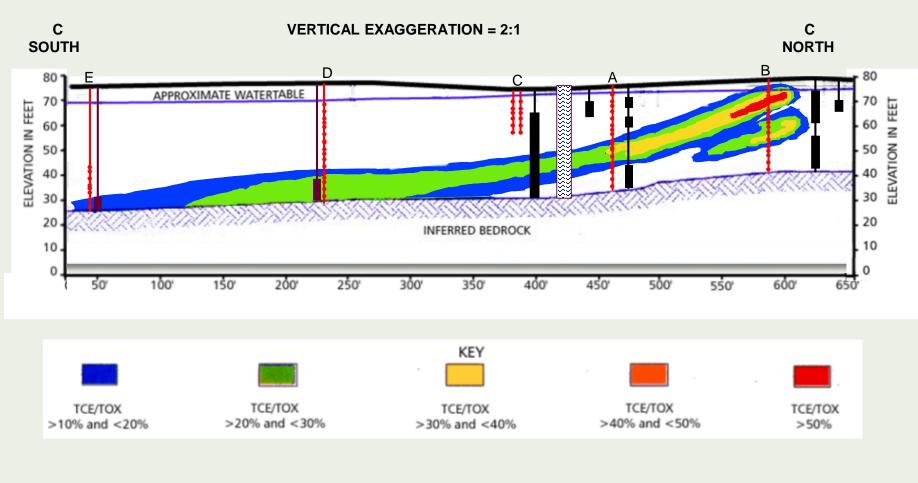
Multi-Level Sampling Transect PCE in a Sandy Aquifer


Site Scale and Transect-Based Profiling Approach

- <u>Transect</u>: Line of vertical profiles oriented normal to the direction of the hydraulic gradient (groundwater flow)
- <u>Sample Interval</u>: Vertical dimension of the sampled portion of the aquifer
- <u>Sample Spacing</u>: Vertical distance between samples

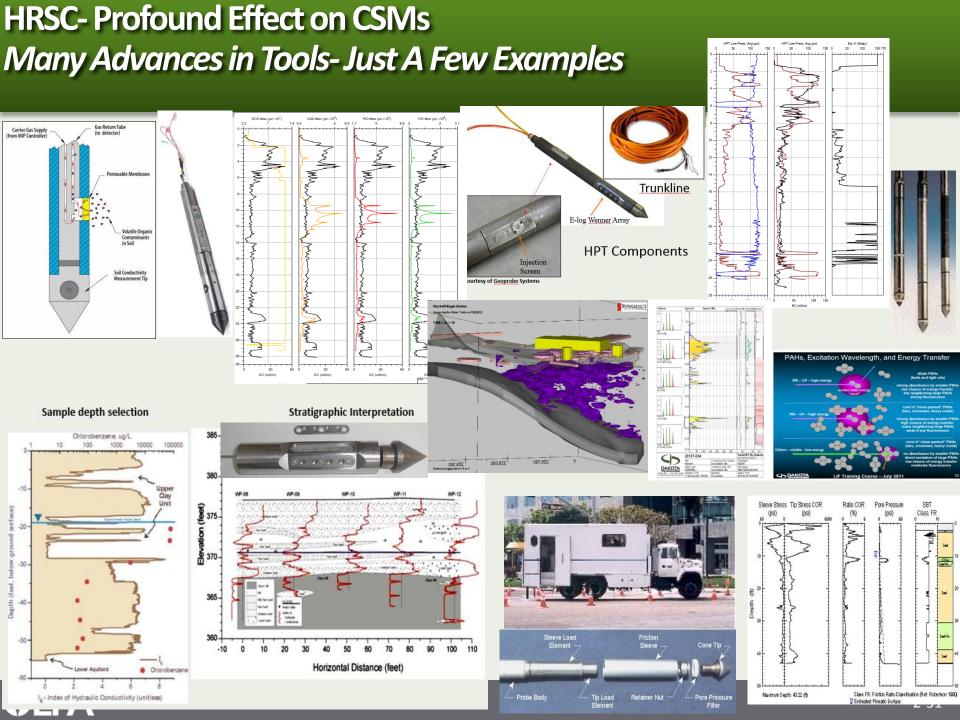


Transect Case Study: Secondary Groundwater Plume Characterization, Pease AFB, NH

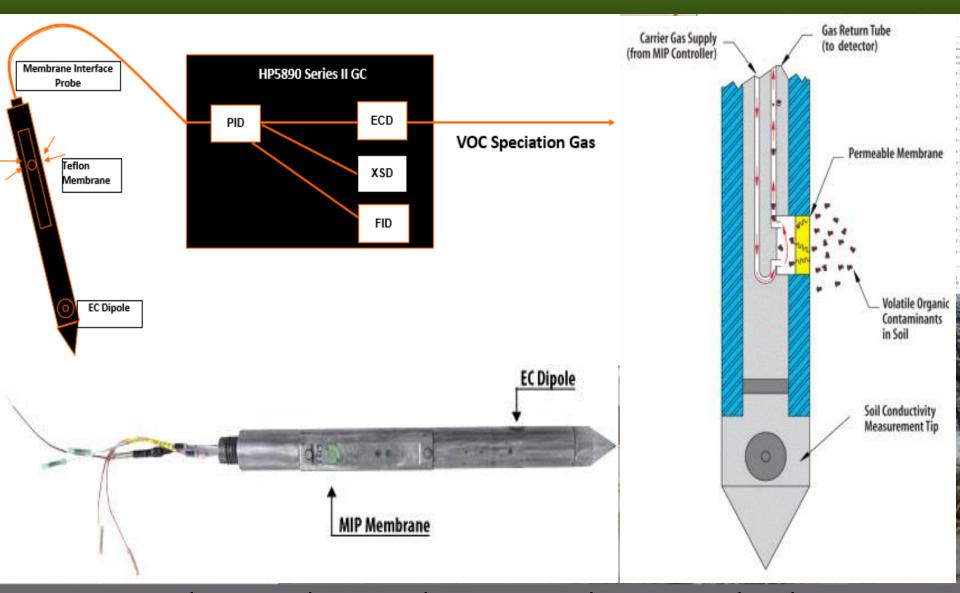

- VOC and POL release site
- VOCs potentially affecting two bedrock supply wells
 - » Concern over DNAPL in bedrock
- Prior monitoring well investigation did not accurately characterize the plume
 - » Defined as "short plume"
- 5 Modified Waterloo Profiler transects performed normal to plume axis
 - » A A' = Downgradient of source
 - » B B' = Through source area
 - » C C' / D D' / E E = Downgradient plume delineation

Profiler Cross Sections Showed VOC Plume was Sinking with Distance from Source (vs. "short plume")

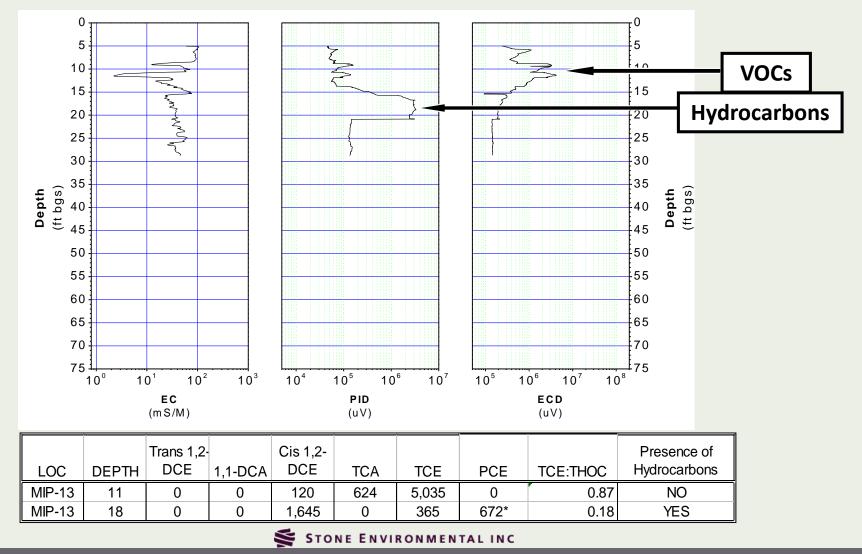
Plume Anatomy Characterization & Remediation: Vertical Profiling vs. Monitoring Well



Prior Investigation Monitoring Well


Stone Profile

Stone Monitoring Well



Membrane Interface Probe- MIP

Case Example – Real-Time MIP With onsite VOC vapor speciation

€PA

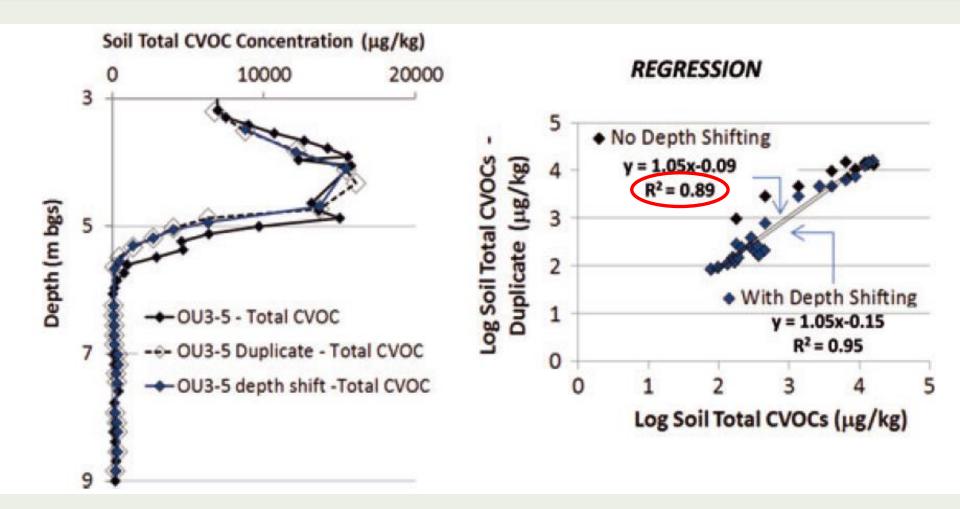
Recent Study Confirms MIP is Only a Qualitative Screening Tool

Groundwater

MIP works well for rapid location of relative high concentration zones such as plume cores or source areas.

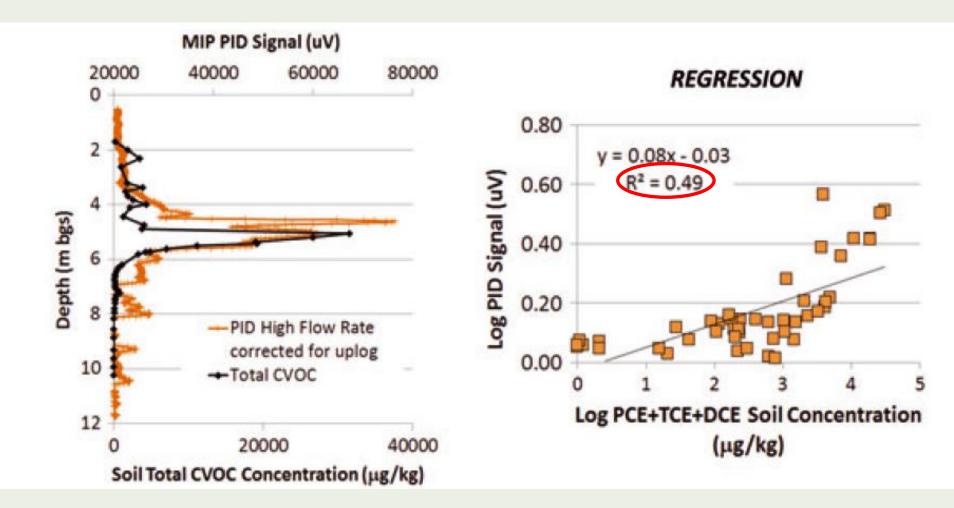
MIP does not work well for estimating contaminant concentrations or mass.

Membrane Interface Probe Protocol for Contaminants in Low-Permeability Zones

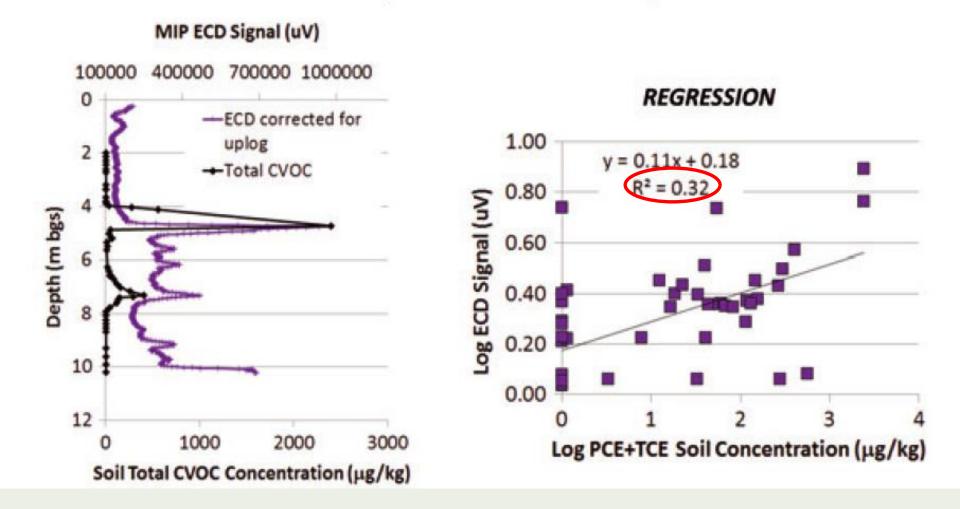

by David T. Adamson¹, Steven Chapman², Nicholas Mahler³, Charles Newell³, Beth Parker², Seth Pitkin⁴, Michael Rossi⁴, and Mike Singletary⁵

Abstract

Accurate characterization of contaminant mass in zones of low hydraulic conductivity (low k) is essential for site management because this difficult-to-treat mass can be a long-term secondary source. This study developed a protocol for the membrane interface probe (MIP) as a low-cost, rapid data-acquisition tool for qualitatively evaluating the location and relative distribution of mass in low-k zones. MIP operating parameters were varied systematically at high and low concentration locations at a contaminated site to evaluate the impact of the parameters on data quality relative to a detailed adjacent profile of soil concentrations. Evaluation of the relative location of maximum concentrations and the shape of the MIP vs. soil profiles led to a standard operating procedure (SOP) for the MIP to delineate contamination in low-k zones. This includes recommendations for: (1) preferred detector (ECD for low concentration zones, PID or ECD for higher concentration zones); (2) combining downlogged and uplogged data to reduce carryover; and (3) higher carrier gas flow rate in high concentration zones. Linear regression indicated scatter in all MIP-to-soil comparisons, including R² values using the SOP of 0.32 in the low concentration boring and 0.49 in the high concentration boring. In contrast, a control dataset with soil-to-soil correlations from borings 1-m apart exhibited an R² of \geq 0.88, highlighting the uncertainty in predicting soil concentrations using MIP data. This study demonstrates that the MIP provides lower-precision contaminant distribution and heterogeneity data compared to more intensive high-resolution characterization methods. This is consistent with its use as a complementary screening tool.

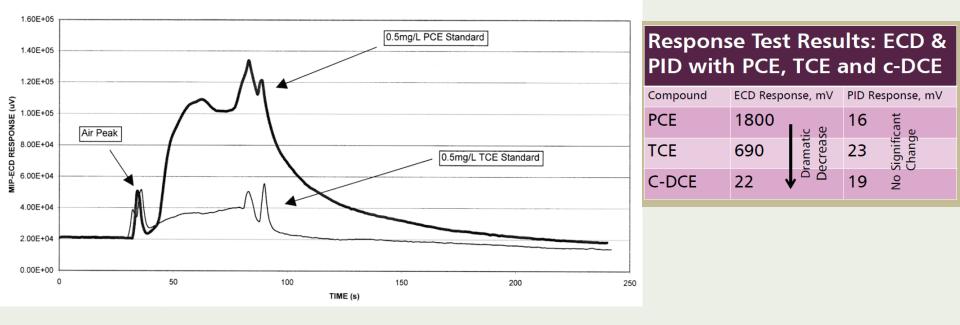


Analytical Results from 2 Adjacent Soil Cores: Good Correlation



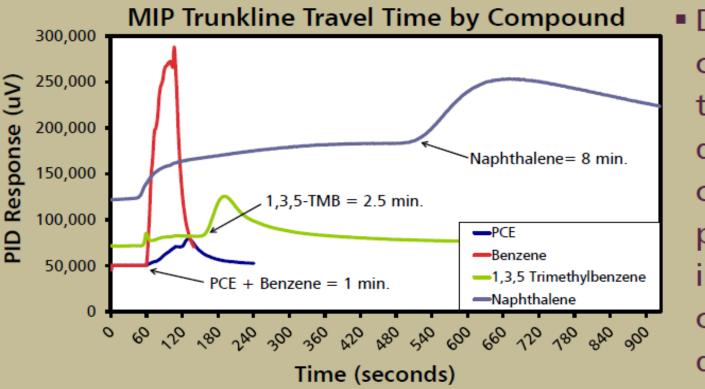
S EPA

MIP and Soil Core High Conc. Location: Reasonably Good ID of Plume Location – Poor Concentration Correlation


MIP and Soil Core Low Conc. Location: Reasonably Good ID of Plume Location – Poor Connection Correlation

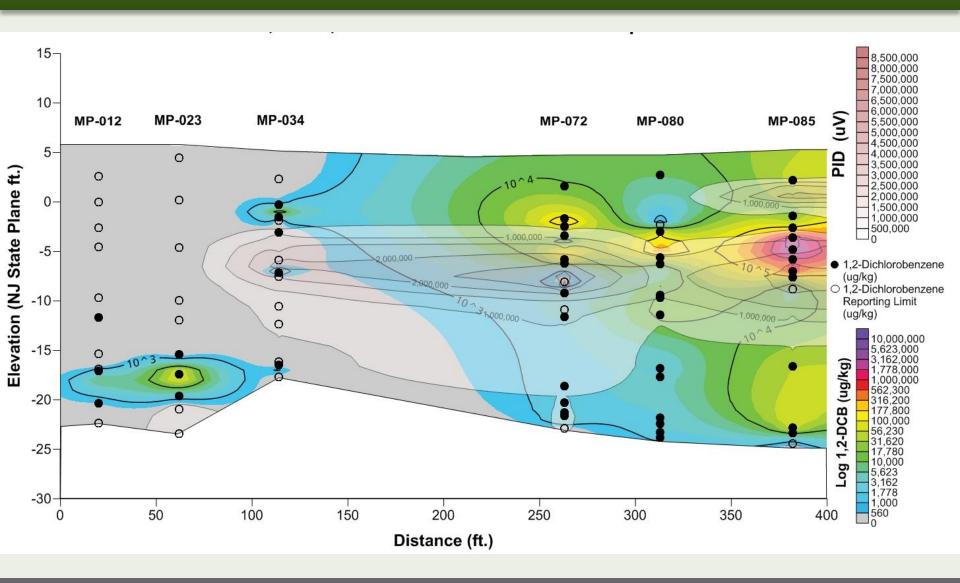
Variability in ECD Detector Response

MIP RESPONSE TESTING TCE and PCE by MIP/ECD



XSD, PID and FID RFs much more uniform

Factors Impacting MIP Performance


Trip Time Disparity

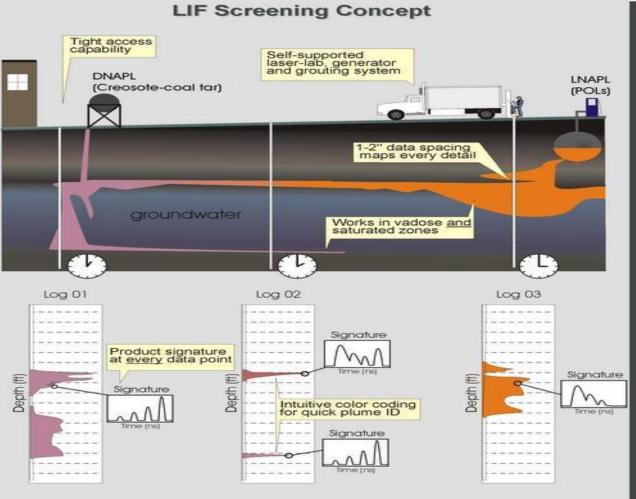
Different compounds travel at different rates, causing potential inaccuracies in contaminant distribution

Correlations and Complex Mixtures Trip Time Disparity



Select BTSC Technical Support Projects Petroleum Brownfields Focus

		Table 2 Tu	aditional Screening/Sampling	w Pool Time Mee						
300.000										
200.000			_							
100.009		Site	No. of Conventional Borings	Total No. of Feet	Total No.of Data Points ¹					
10.000		Steve's Amoco	27	726	291					
6.667		T&T Standard	23	641	257	_ 10 19 05				
3.333 ~~~ M~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~	monum	Severson's Service	30	644	259					
4.444		DM&E Railroad	31	883	354					
9.16E+009		Former Husky Oil	22	601	241					
7.63E+006	C.II.I.D.	TOTAL	133	3,495	1,403					
6.11E+006	Soil Lab Resu	¹ Consists of 1 data poin fixed laboratory.	il sample analyzed in a							
4.58E+005	Benzene	Incu noorniory.								
3.05E+006	Ethylbenzene									
1.53E+005	MtBE		Real-Time Measureme							
	Toluene	Site	No. of MIP Borings	Total No. of Feet of Data	Total No.of Data Points					
5.63E+005	Xylenes	Steve's Amoco	27	726	72,600					
4.50E+005	Aytenes	T&T Standard	23	641	64,100					
3.38E+008		Severson's Service	30	644	64,400					
2.25E+005		DM&E Railroad	31	883	88,300					
1.13E+005	Groundwater	Former Husky Oil	22	601	60,100					
0.00E+000	Benzene	TOTAL	133	3,495	349,500					
	Ethylbenzene	¹ Consists of 20 data point	s/instrument/ per foot. Instruments ir	clude Conductivity, PID,	, FID, ECD, and Temp.	Site: Husky Oil Pierre, SD				
5.00E+005 4.17E+005	MtBE					Survey Date: Dec 2004 MIP Borings: 1-22				
3.33E+005			Table 3 – Cost Reduction Using Triad Study							
2.50E+005	Toluene			· ·		View: From NW				
1.67E+005	Xylenes	Site	Previous Assessments	Triad Assessment	% Reduction	Horiz Slice: 18 ft				
8.33E+004		Steve's Amoco	\$0.00	\$32,220,63	0.00%	Vert Slice: Ctr of Pump Island				
0.00E+009		T&T Standard	\$62,837.06	\$30,574.07	51.34%	Detector: PID (uV)				
150.000		Severson's Service	\$103,044.38	\$30,997.17 ¹	69.92%	Conductivity > 100 mS/m				
126.667		DM&E Railroad	\$34,763.29	\$29,937.93	13.88%	COLUMBIA Technologies				
103.333	0	Former Husky's	\$0.00	\$25,312.17 ¹	0.00%	SmartData Solutions				
80.009 0.0 2.3 4.7 7.0			yet been received, therefore, costs ar	-						


Laser Induced Fluorescence

- 'Immediately obvious that LNAPL does not float on the water table... majority mass of LNAPL below water table... profound implications for remediation'
- 'Allowed us to confidently target LNAPL remediation efforts with almost surgical precision... SVE would not have significantly affected submerged LNAPL'
- 'We assumed that free product would simply follow the water table gradient... LIF data showed us that this is rarely the case; rather, migrating LNAPL follows the path of least resistance... including opposite the hydraulic gradient'

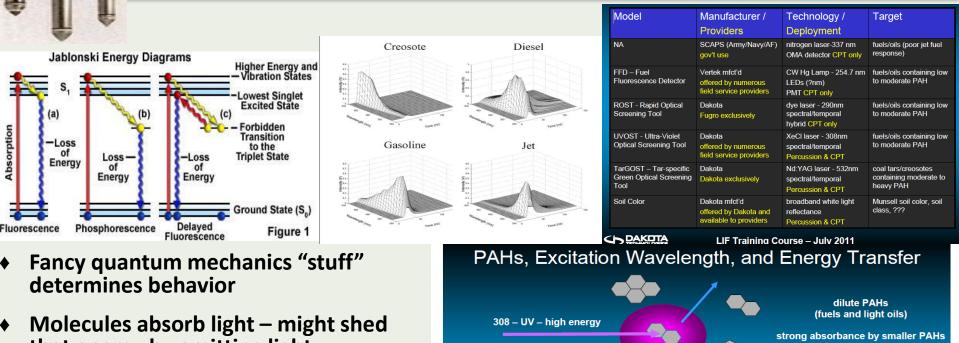
Laser Induced Fluorescence (LIF) – Basics of Optical Screening Tools

- Work for Aromatic Compounds (PAH)
- Detect NAPL
- Employ sapphirewindows
- Direct push
- Log of depth vs. fluorescence

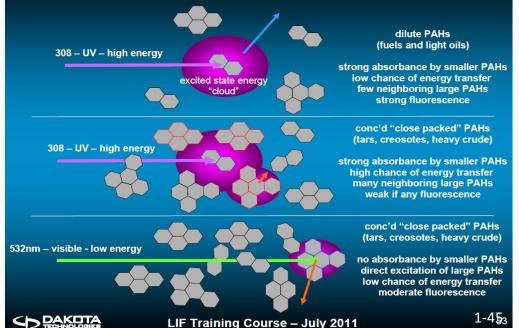
Dakota Technologies, Inc.

LIF – UVOST and TARGOST

Ultra Violet Optical Screening Tools (UVOST)

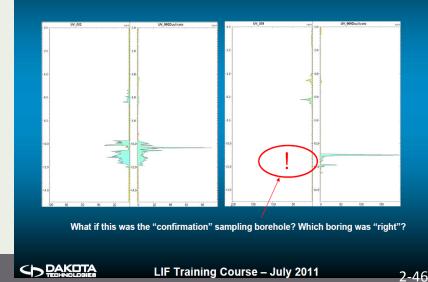

- » Gasoline, diesel, jet (kerosene), motor oil, cutting fluids and hydraulic fluid
- » Does not see PCBs and straight chain halogenated compounds
- » Can give product class information though use of waveform evaluations
- » 10-500 ppm DLs From "sheen to neat" might not see dissolved phase PAHs
- » Best for use where presence of NAPL is driver for investigation
- » Matrix effects from soil particle size and color and other things that might be found in soils (sea shells, peat, calcite and calcareous sands)

Tar Specific Green Optical TARGOST


» Coal tar (MGP waste) and creosote and pentachlorophenol (wood treatment)

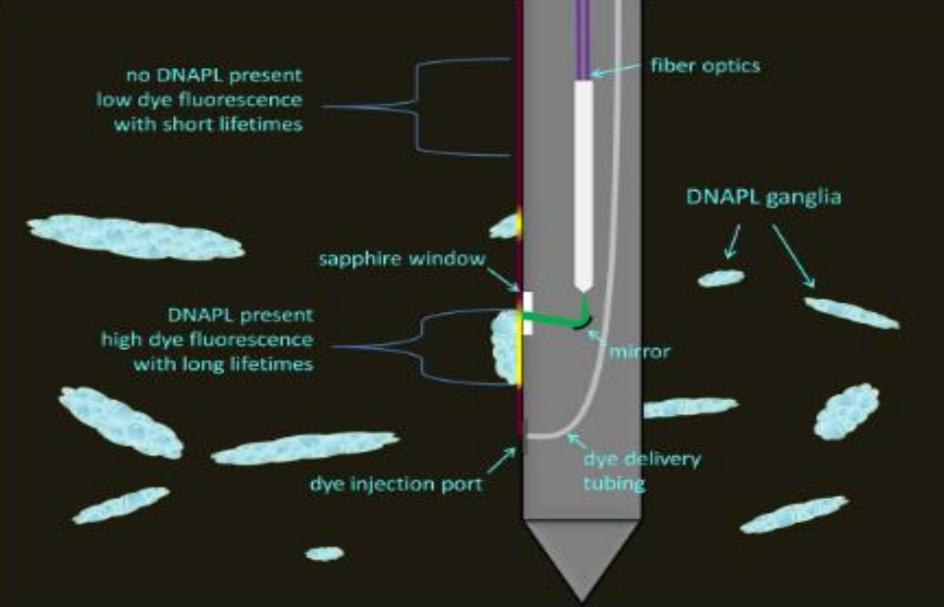
How LIF Works – Some Limitations

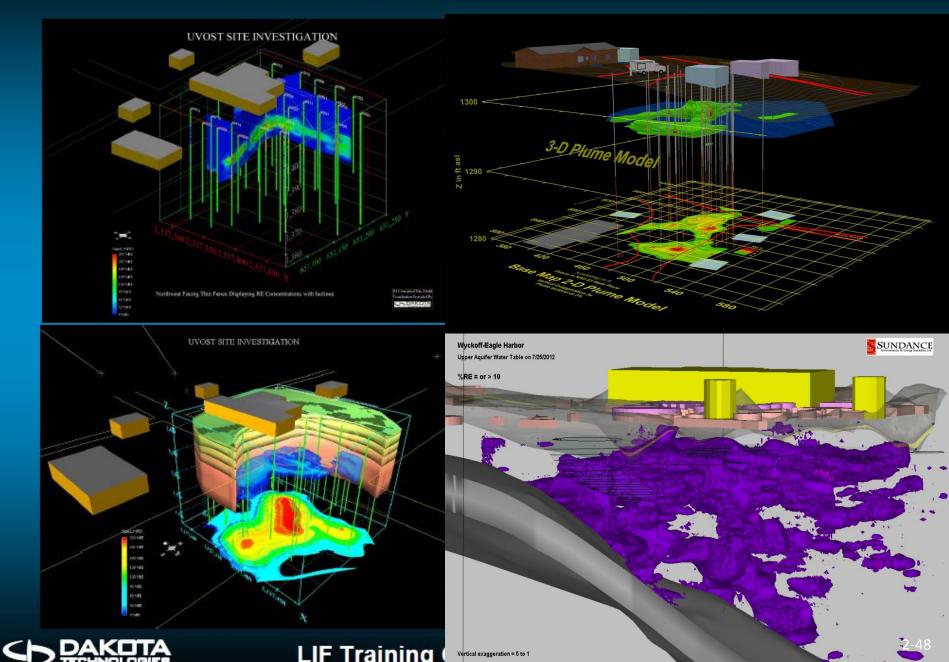
- ۲ that energy by emitting light
- Aromatic (ring-shaped) molecules excel at this
- Note to "brainiacs": See Joseph R. ٠ Lakowicz' "Principles of Fluorescence Spectroscopy", 3rd Edition"


LIF Quality Control

- Single point calibration with known reference
 - » Like PID calibration with 100 ppm isobutylene
- Reference emitter (RE) known NAPL mixture is placed on window before each push
- Subsequent readings normalized by RE response; data ultimately displayed as %RE
- Corrects for change in optics, laser energy drift, window, mirror, etc.
 - » RE approach used by all ROST and UVOST providers in U.S. and E.U.
- Correct shape of waveform also QA's the qualitative aspect of the fluorescence

butterfly plots of UVOST logs

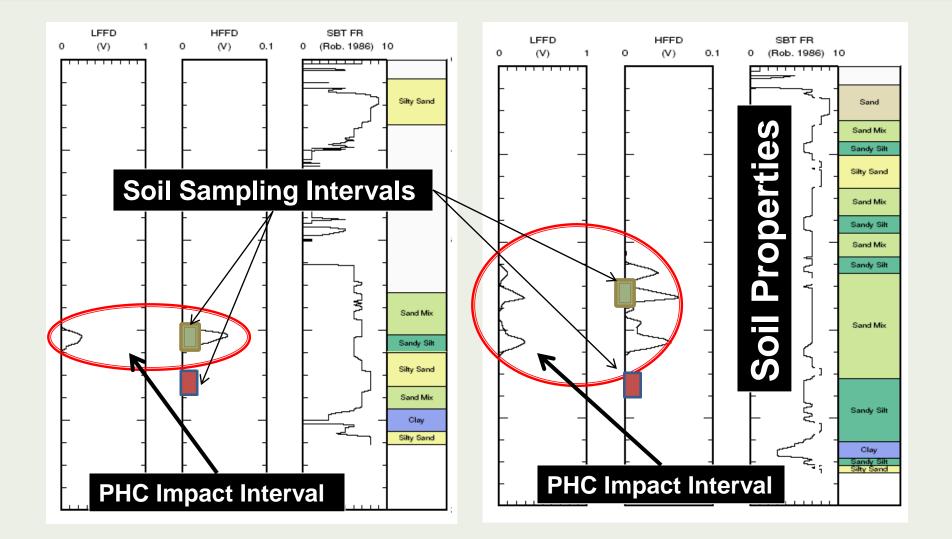



LIF – The Newest Frontier

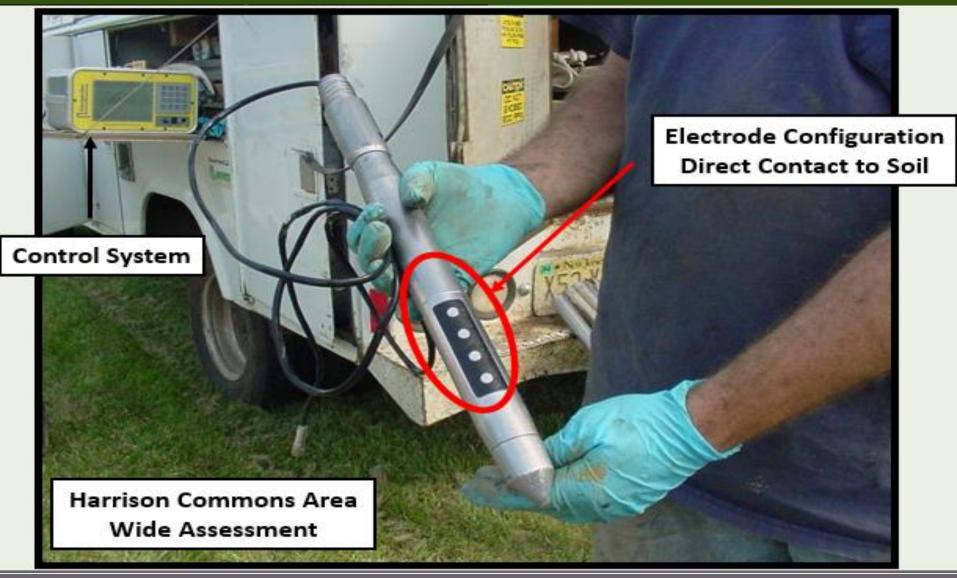
Dye based laser-induced fluorescence sensing of chlorinated solvent DNAPLs

R.W. St. Germain Dakota Technologies, Inc., Fargo, ND, USA M.D. Einarson & A. Fure Haley & Aldrich, Oakland, CA & Indianapolis, IN, USA S. Chapman & B. Parker University of Guelph Guelph ON Canada

3D UVOST Field Data CSMs


Fuel Fluorescence Detector- FFD

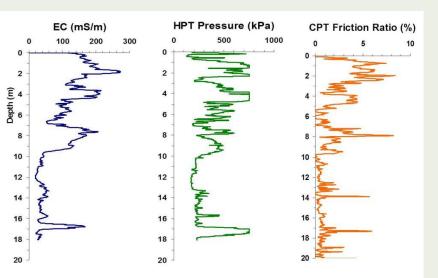
- Primarily for petroleum hydrocarbon delineation
- Direct push UVF probe (push only)
- UV lamp in probe causes hydrocarbons to fluoresce
- Fluorescence captured by probe and converted to electronic signal
- Continuous log of electronic signal created
- Signal strength corresponds to concentration and can be imported to ArcGIS
- Impact area can be imaged by classifying according to signal strength


2 - 49

Example FFD Logs

Electrical Conductivity- EC

Cone Penetrometer Testing (CPT) and Piezocone


- Static push (no percussion or vibration)
- Large heavy trucks
- Real-time data from *in situ* sensors
- piezocone

Geoprobe Hydraulic Profiling Tool (HPT)

- Continuous hydrostratigraphic data profiling
- Describes hydrostratigraphy on the basis of the flow of water into the formation
- Real-time data generation
- Direct push (percussion and vibration or static push)

Geophysical Surveys

http://water.usgs.gov/ogw/bgas/frgt/

FRGT METHOD SELECTION TOOL

Fill in cells shaded aqua-blue (in column C). All other cells will be automatically updated.

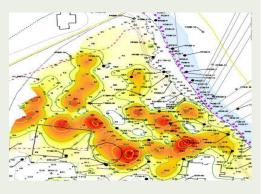
indicates method is potentially suitable
 indicates method is likely not suitable

indicates method is likely appropriate/effective
 indicates method is not likely appropriate/effective

Project and site parameters		Methods	ТТ	Appropriate	Effectiveness	Relative	Metho	d contrib	utes to	goal:				Made i	nfeasi	ible by	site pa	ramete	ſ:
1. What is the depth to bedrock (m)?	15	11		for goals	at site	cost	АВ	СD	E F	G	ні	J	ĸ	1 2	3	4 5	6 7	8 :	9 10 11
2. What is the electrical resistivity of bedrock (ohm-m)?	100	Surface methods																	
3. What is the minimum spacing between wells (m)?	4	1. EM terrain conductivity (induction)		•	0	Low	4											×	
4. What is the well casing?	Open	2.ERT		•	•	Low	4				4								
5. What is the vertical extent of open holes (m)?	40	3. GPB		•	0	10%	4							X X				×	
6. Is borehole Auid turbid/ muddy (opaque)?	Yes	4. Resistivity - azimuthal		0	•	Low													
7. Borehole diameter (inches)	6	5. SP - azimuthal		0	•	Low													
& Cultural EM interference? (utilities, pipes, etc.)	Yes	6. Seismic refraction		•	•	Low	4												
R is it possible to disturb the ground for electrodes or geo,		7. Seismic reflection		•	•	Medium	- 4												
10. What is native groundwater conductivity (micro-Słom)?	150	8. Time domain EM	0	•	0	Low	4											×	
If. What is the project cost threshold for a given method?	High	Cross-hole methods																	
		3.ERT		•	•	Nedium	4			*	14								
Goals		10. GPB	0	•	0	High					14			× ×					
A. Identify discrete fracture network characteristics	Yes	11.1P		•	•	Medium	4				1 4								
R Identify lithologic contacts	Yes	12. Seiomic		•	•	High	4				1								
C. Map depth to bedrock	No	Borehole methods																	
D. Understand large-scale anisotropy, average fracture ori	e No	13. ATV		•	•	Low	44												
E. Estimate discrete fracture hydraulic properties	Yes	14. Caliper		•	•	Low	4 4												
F. Estimate small-scale effective hydraulic properties	Yes	15. EM Induction		•	•	Low													
G. Estimate large scale hydraulic properties	Yes	16. Flowmeter (single hole)		•	•	Low			4 4										
H. Identify interwell hydraulic connections	Yes	17. Flowmeter (cross-hole)		•	•	Low			4 4		14								
I. Time-lapse snapshots of amendment delivery	Yes	18. Gamma		•	•	Low	4												
J. Continuous monitoring of degradation	No	13. IP and Normal Resistivity		•	•	Low													
K. Screening for iron minerals	No	20. Magnetic susceptibility		•	•	Low	4												
		21.NMB		•	•	Medium	1		4										
Assumptions		22. OTV		•	0	Low	4 4										×		
		23. Radar (borehole GPR)		•	0	Aledium	4							× ×					
		24. Video camera		•	0	Low	4 4										×		
		Hydrologic tests																	
		25. Dilution/fluid replacement		•	•	High			4.4										
		26. Focused packer testing		•	•	High			4.4	4									
		27. Fluid resistivity & temperature		•	•	Low			4 4	4	1								
Comments		28. High resolution temperature		•	•	High			4 4										
		23. Open-hole hydraulic tests		•	•	Nedium				4									
		30. Tracer tests		•	•	High			4 4	4									
		This FRGT utility is intended to help s	alact m	athods and to acc	oca thair appropriate	need and the m	otoptial for	anacona aine	n the gen	de of rea	ur invocti	iantion	Actual	perform	anco of	the			
		geophysical and hydraulic tools may						Success give	in the goa	no or yo	ar myesti	igation.	necual	periorini	ance of t				

1-54

Passive/Active Soil Gas



• Passive soil gas

- » Adsorbent placed in shallow subsurface
- » Easy to install, inexpensive, provide good site coverage

Active soil gas

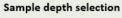
- » Hand drive points or direct push deployment
- » Depth discrete, can have lower DLs
- GC/MS analysis of VOCs (SW-846, TO methods)
- High density
- Define areas of concern, refine CSM, optimize drilling programs, locate source areas, optimize sample collection (location, depth),
- Gas stations, dry cleaners, solvent plumes
- Decisions include: optimized collaborative data locations, identify potential VI issues, revise site boundaries, update CSM, well placement/screen intervals, pathway determinations, etc.

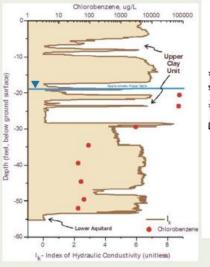
Advanced profiling system

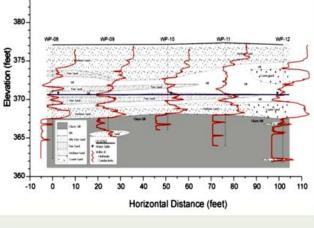
385-

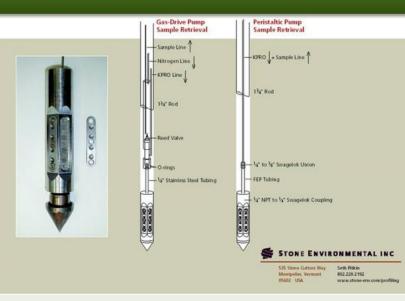
Profiler Hardware and Tip Modifications

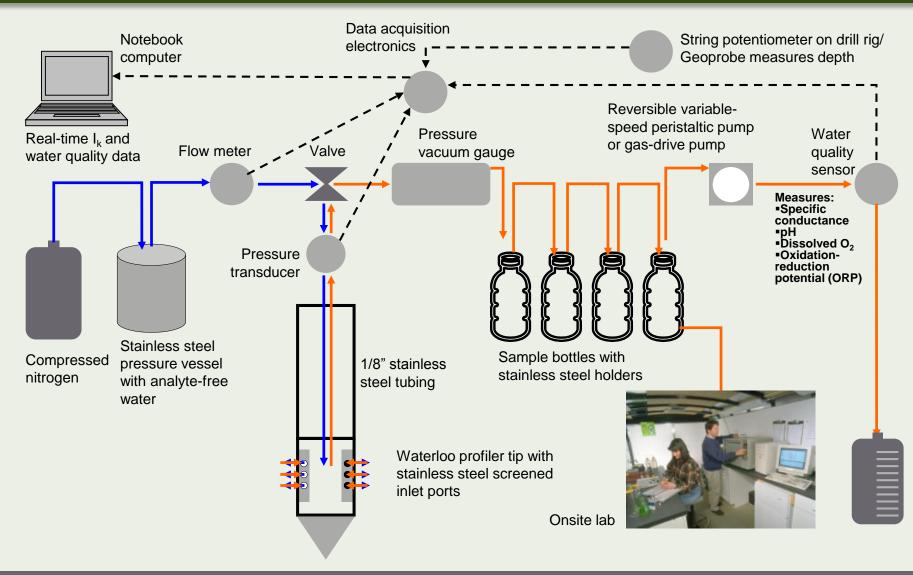
1994 Waterloo Profiler




Waterloo Advanced Profiling System (Waterloo^{APS™})


Two Uses of I_K Data


Waterloo^{APS} Sampling Configurations

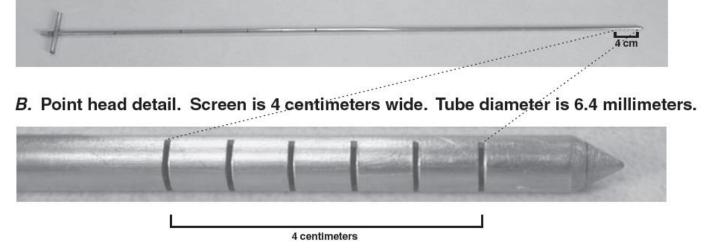


Stratigraphic Interpretation

Waterloo^{APS} Data Acquisition Configuration and Process

Polyethylene Diffusion Bag Samplers

- Uses
- Advantages
- Disadvantages


- A: Diffusion Bag with Polyethylene Mesh
- **B: Diffusion Bag Without Mesh**
- C: Diffusion Bag and Mesh Attached to Bailer Bottom

Pushpoint Sampler

2 Pushpoint Sampling for Defining Spatial and Temporal Variations in Contaminant Concentrations in Sediment Pore Water

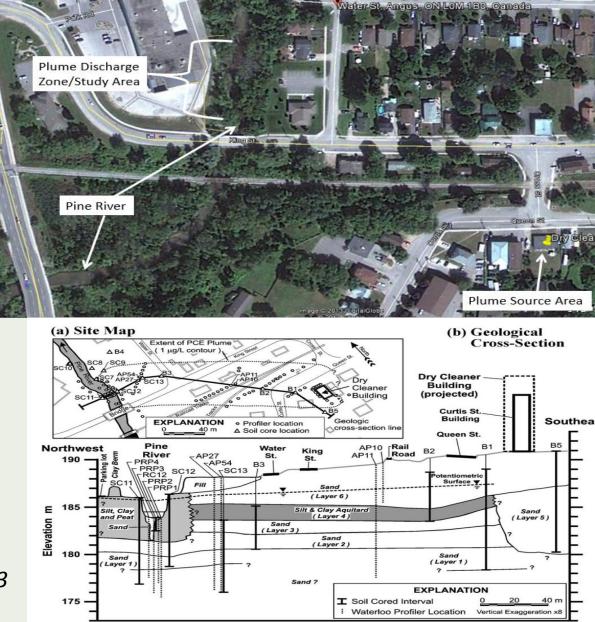
Figure 1. *A*, the 91-centimeter-long PushPoint Extreme Sampler, and *B*, closeup of the slotted screen at the tip.

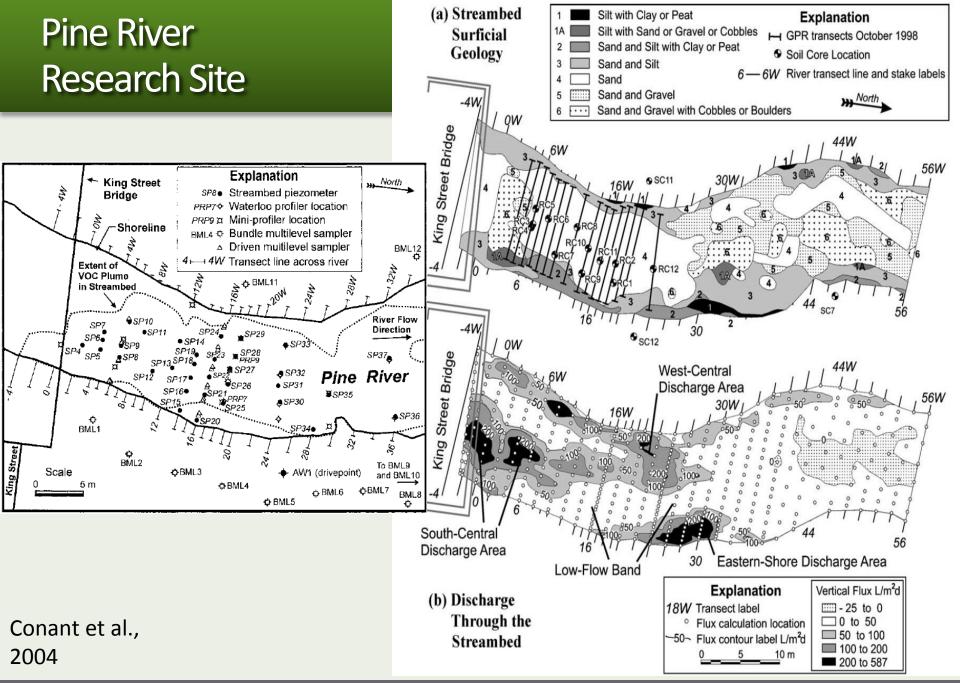
Source: Zimmerman and others, 2005

Groundwater plume discharge into surface water is spatially complex

A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions

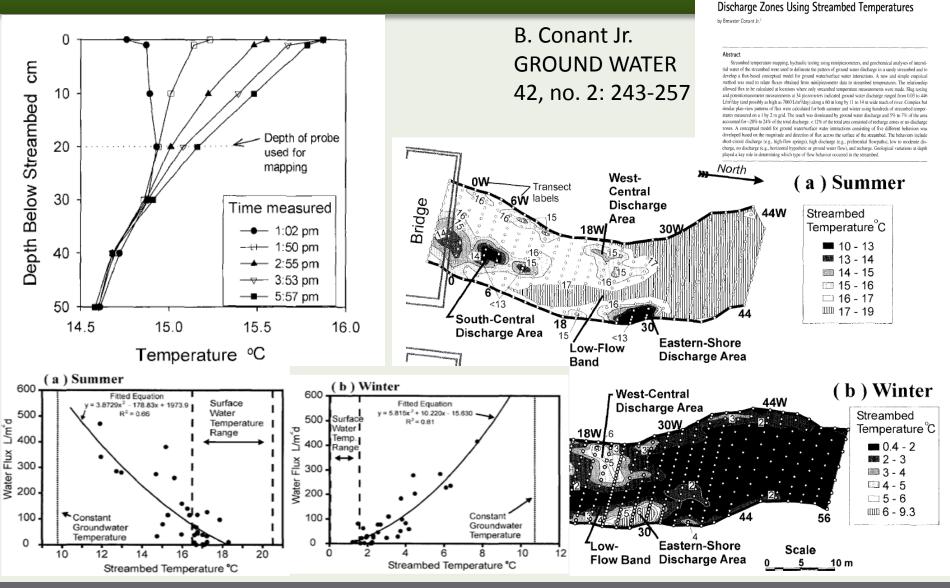
Brewster Conant Jr.*, John A. Cherry, Robert W. Gillham


Department of Earth Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario Canada N2L3G1


Received 6 November 2003; received in revised form 1 April 2004; accepted 1 April 2004

Abstract

An investigation of a tetrachloroethene (PCE) groundwater plume originating at a dry cleaning facility on a sand aquifer and discharging to a river showed that the near-river zone strongly modified the distribution, concentration, and composition of the plume prior to discharging into the surface water. The plume, streambed concentration, and hydrogeology were extensively characterized using the Waterloo profiler, mini-profiler, conventional and driveable multilevel samplers (MLS), Ground Penetrating Radar (GPR) surveys, streambed temperature mapping (to identify discharge zones), drivepoint piezometers, and soil coring and testing. The plume observed in the shallow streambed deposits was significantly different from what would have been predicted based on the characteristics of the upgradient plume. Spatial and temporal variations in the plume entering the near-river zone contributed to the complex contaminant distribution observed in the streambed where concentrations varied by factors of 100 to 5000 over lateral distances of less than 1 to 3.5 m. Low hydraulic conductivity semi-confining deposits and geological heterogeneities at depth below the streambed controlled the pattern of groundwater discharge through the streambed and influenced where the plume discharged into the river (even causing the plume to spread out over the full width of the streambed at some locations). The most important effect of the near-river zone on the plume was the extensive anaerobic biodegradation that occurred in the top 2.5 m of the streambed, even though essentially no biodegradation of the PCE plume was observed in the upgradient aquifer, Approximately 54% of the area of the plume in the streambed consisted solely of PCE transformation products, primarily cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC). High concentrations in the interstitial water of the streambed did not correspond to high groundwaterdischarge zones, but instead occurred in low discharge zones and are likely sorbed or retarded remnants of past high-concentration plume discharges. The high-concentration areas (up to 5529 µg/


Brewster Conant Jr.*, John A. Cherry, Robert W. Gillham Journal of Contaminant Hydrology 73 (2004) 249-279

Distribution of Streambed Temperature

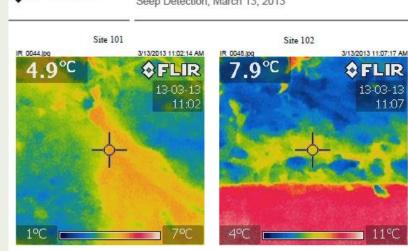
ground. Wate

Delineating and Quantifying Ground Water

Key Findings

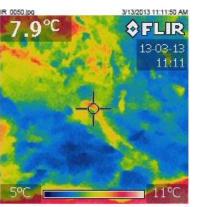
- * "the near-river zone strongly modified the distribution, concentration, and composition of the plume prior to discharging into the surface water."
- Spatial and temporal variations in the plume entering the near-river zone contributed to the complex contaminant distribution observed in the streambed where concentrations varied by factors of 100 to 5,000 over lateral distances of less than 1 to 3.5 m."
- "...geological heterogeneities at depth below the streambed controlled the pattern of groundwater discharge through the streambed and influenced where the plume discharged into the river (even causing the plume to spread out over the full width of the streambed at some locations)."
- "...essentially no biodegradation of the PCE plume was observed in the upgradient aquifer. Approximately 54% of the area of the plume in the streambed consisted solely of PCE transformation products, primarily cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC)."

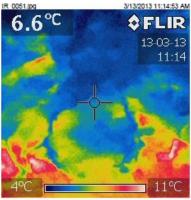
Brewster Conant Jr.*, John A. Cherry, Robert W. Gillham Journal of Contaminant Hydrology 73 (2004) 249-279

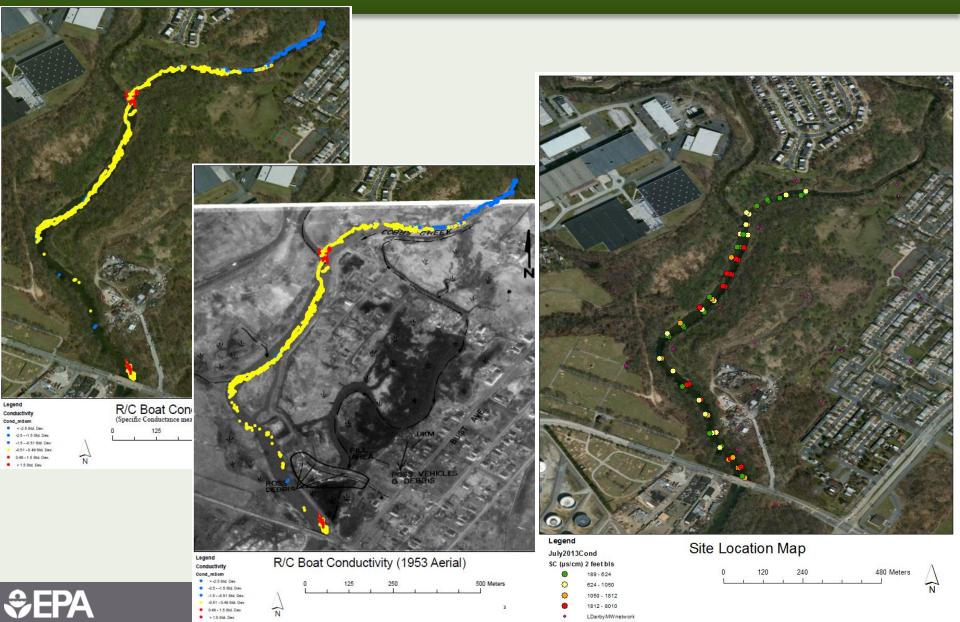


Thermal Imaging

EPA

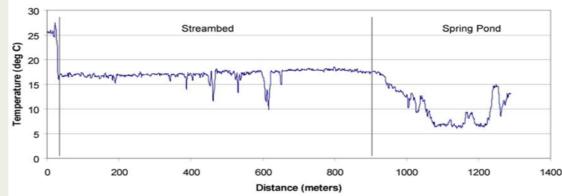

♦ IR Camera detects variations in temperature at a moment in time
(OU3) Seep Detection, March 13, 2013




Site 103

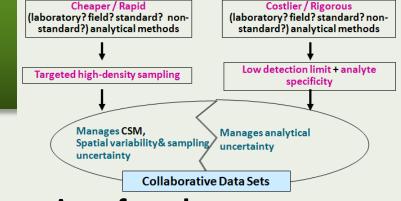
Site 104

Specific Conductance Survey – Surface Water and Sediment

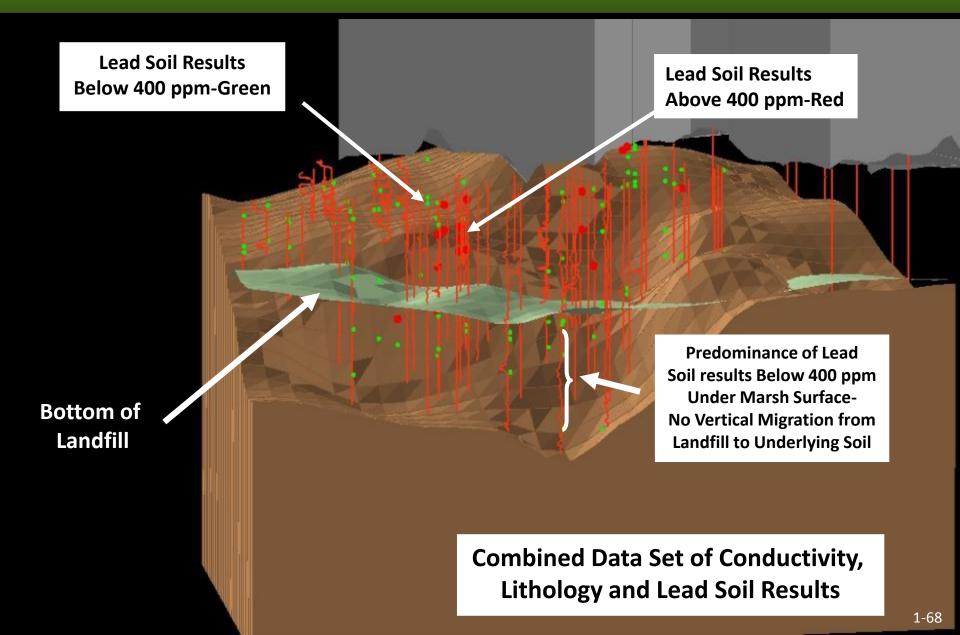

Distributed Temperature Sensor

- Distributed Temperature Sensing Systems (DTS) measure temperatures using fiber optics as linear sensors
- Temperatures are recorded along the optical sensor cable, in continuous profile
- High accuracy of temperature measurement is achieved over great distances
- Continuous measurement over kilometers
- 30 kilometers for each channel (some systems)
- Spatial resolution of about 1 meter (depends on configuration)
- Thermal resolution of about 0.01 degree Celsius (depends on configuration)
- Temporal resolution of seconds to hours depending on the desired thermal precision

http://water.usgs.gov/ogw/bgas/fiber-optics/


Streambed Temperature Stream Temperature = 17.6 deg C

Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Christopher S. Lowry, John F. Walker, Randall J. Hunt, and Mary P. Anderson. WATER RESOURCES RESEARCH, VOL. 43. 2007


Collaborative Data-Examples of Other Tools

- Different methods for same analyte or suite of analytes
- Multiple lines of evidence = "weight of evidence"
 - » Control project and site decision uncertainties
 - » Revises decision criteria in response to data
- One method provides information for when another is required or beneficial
- Control multiple error sources
 - » Sampling design, matrix, prep, analytical
- Result: increased confidence in the CSM; better decisions, better remedy implementation
 - » Characterization of chemistry and physical attributes with adequate data density

Example of Collaborative Data Set

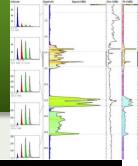
Managing Tools- DMA

Initial site-specific performance evaluation for a wide range of sampling, testing, and data management tools

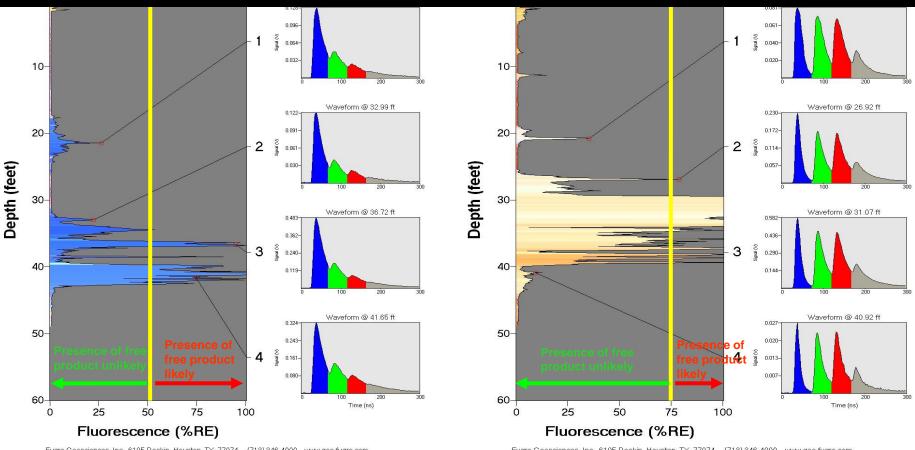
- Performed early in program, though not always appropriate
- Establishes that proposed technologies and strategies
 - » provide information appropriate to meet project decision criteria
 - » perform as advertised by the vendor
- Assesses performance of field analytical technology compared to fixed-base laboratory
- Highlights laboratory and field method advantages and challenges
- Provides initial look at CSM assumptions; augments planned data collection and CSM development
- Develops relations between visual observations and direct sensing tools
- Provides flexibility to change tactics based on DMA rather than full implementation
- Optimizes sequencing, staffing, load balance, unitizing costs

Protection Agency's (EPA) Brownfields Initiative and other	work
revitalization efforts have grown into major national	Dem
programs that have changed the way contaminated	com
property is perceived, addressed, and managed in the	and
United States. In addition, there has been a shift within	1.
EPA and other environmental organizations in the way	
hazardous waste sites are cleaned up. Increasingly,	2.
project managers, regulators, technology providers, and	
other stakeholders are recognizing the value of	
implementing a more dynamic and flexible approach to	
site cleanup that focuses on real-time decision-making in	
the field to reduce costs, improve decision certainty, and	
expedite site closeout. The approach, known as Triad,	3.
uses (1) systematic project planning, (2) dynamic work	
strategies, and (3) real-time measurement technologies	
designed to increase confidence in the project (Figure 1).	
	1
Figure 1. The Triad Approach	/
and the second	(
Δ.	
	E
Systematio Dynamio	1
Planning Confidence Strategy	6
Planting additional additional	2
	3
Davi Time Manuscrament	1 *

nologies	assessment a
nd technical practices have nted in a vaniety of regulatory mfeids, Superfund, the and Recovery Act (RCRA), d storage fanis (UST), and d storage fanis (UST), a series of technical builetins attaction Technology Support a series of technical builetins attorn of technical builetins are	identify, review complex techn copposities an demonstration Office of Supe Innovation (OS Research and center also wo Brownfields CI potnership with (USACE) and
ct managers and team anagers or stakeholders may to consultants and service est management and technical appropriately at their sites. ficient information for less and team members to request	Localities can : the EPA Regic by calling 1-87 information ab (703) 603-990
	notagies ind technical practices have test in a variety of regulatory relative, Supporting the second relative, Supporting the second relation technology Support a series of technical buildform as the second technical buildform any the second technical buildform any the second technical buildform any to consultants and service to consultants and service to management and technical popopolately at their stex.


(About the Brownfields and Land Revitalization Technology Support Center (BTSC)	
	EPA established the BTSC (see	
	www.brownfieldstsc.org) to ensure that brownfields and	
	other land revitalization decision-makers are aware of	
	the full range of technologies and technical support	
	services available for site assessments and cleanups	
	and to help them make informed decisions about their	
	sites. The center can help federal, state, local, and tribal	
	officials evaluate strategies to streamline the site	
	assessment and cleanup process at specific sites;	
	identify, review, and communicate information about	
	complex technology options; evaluate contractor	
	capabilities and recommendations; and plan technology	
	demonstrations. BTSC is coordinated through EPA's	
	Office of Superfund Remediation and Technology	
	Innovation (OSRTI) and works through EPA's Office of	
	Research and Development (ORD) laboratories. The	
	center also works closely with EPA's Office of	
	Brownfields Cleanup and Redevelopment and in	
	partnership with the U.S. Army Corps of Engineers	

Localities can submit requests for assistance through
the EPA Regional Brownfields Coordinators, online, or
by calling 1-877-838-7220 toll free. For more
information about the BTSC, contact Carlos Pachon at
(703) 603-9904 or pechon.cerlos@ece.cov.


Example DMA Output

http://brownfieldstsc.org/pdfs/Demo nstrations_of_Methods_Applicability .pdf

Free Product At >50% Relative Fluorescence for Gasoline

Free Product At >75% Relative Fluorescence for Oil

Fugro Geosciences, Inc., 6105 Rookin, Houston, TX 77074 (713) 346-4000 www.geo.fugro.com

Fugro Geosciences, Inc., 6105 Rookin, Houston, TX 77074 (713) 346-4000 www.geo.fugro.com

Case Studies of Interest

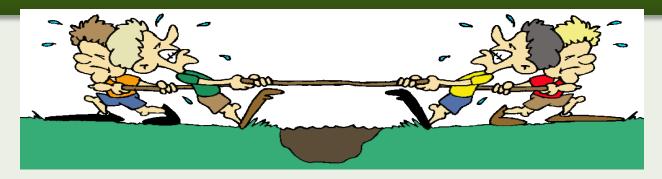
Innovations in Site Characterization Case Study: The Role of a Conceptual Site Model for Expedited Site Characterization Using the Triad Approach at the Poudre River Site, Fort Collins, Colorado

U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation Brownfields Technology Support Center Washington D.C. 20460

Prepared by:

The Brownfields and Land Revitalization Technical Support Center

In cooperation with: U.S. Environmental Protection Agency Region 8


United States Environmental Protection Agency Office of Solid Waste and Emergency Response (5102G) EPA 542-R-06-007 November 2006 www.epa.gov clu-in.org U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF SUPERFUND REMEDIATION AND TECHNOLOGY INNOVATION SUPERFUND TECHNOLOGY SUPPORT CENTER WASHINGTON, D.C. 20460

United States Environmental Protection Agency Office of Solid Waste and Emergency Response (5102G) September 2010 www.epa.gov www.clu-in.org 542-R-10-006

Innovations in Site Characterization Streamlining Cleanup at Vapor Intrusion and Product Removal Sites Using the Triad Approach: Hartford Plume Site, Hartford, Illinois

Now Let's Look at Soil Incremental Soil Sampling vs. HRSC in Groundwater

Soil

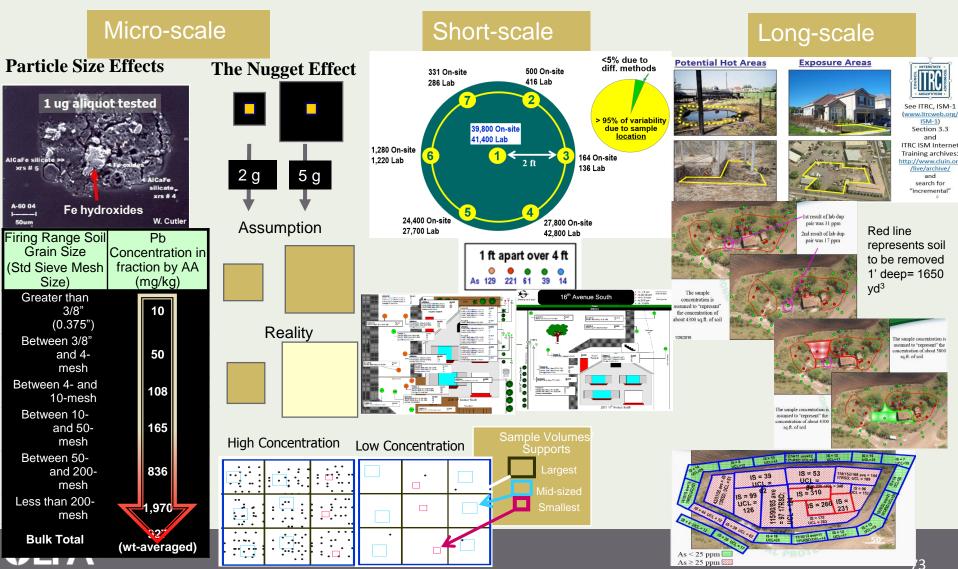
- 1. High
- 2. Static, Lower spatial correlation
- 3. Low
- 4. Low
- 5. Decision Unit
- Lower cost/shorter cleanups= blunt force

Matrix Property

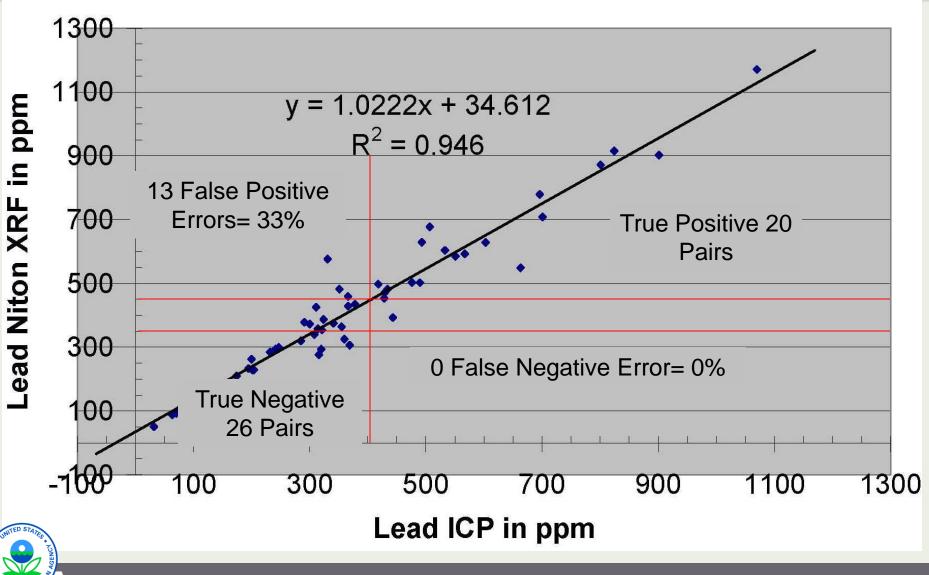
- 1. Variability
- 2. Contamination distribution
- 3. Mass transfer and storage
- 4. Cost of obtaining samples
- 5. Typical exposure scenarios
- 6. Remediation applications

- 1. High
- 2. Dynamic, higher spatial correlation

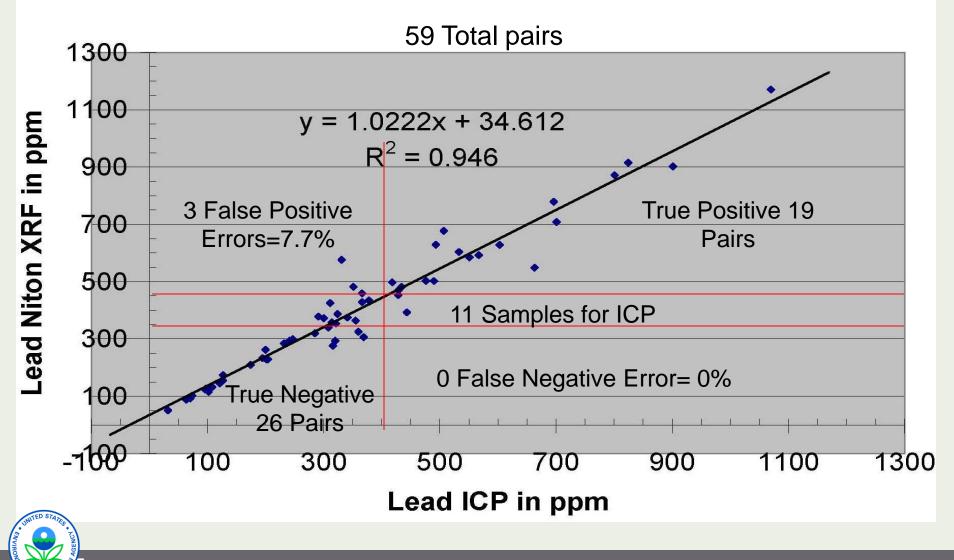
Groundwater


- 3. High
- 4. High
- 5. Variable
- 6. High cost/long cleanups= finesse,

The Nature of Soil



Variability in Soil Matrices- 3 scales of importance


Lead Niton vs. ICP

59 Total pairs

3 Way Decision Structure With Region of Uncertainty

Lead Niton vs. ICP

Example of Standardizing Core Descriptions

- No visible evidence No visible evidence of oil on soil sample
- Sheen Can be effective in detecting petroleum-based products in concentrations lower than regulatory cleanup guidelines. Sheens are classified as follows:
 - » No Sheen (NS) No visible sheen on water surface
 - » <u>Slight Sheen (SS)</u> Light colorless film; spotty to globular; spread is irregular, not rapid; areas of no sheen remain; film dissipates rapidly
 - » <u>Moderate Sheen (MS)</u> Light to heavy film, may have some color or iridescence, globular to stringy, spread is irregular to flowing; few remaining areas of no sheen on water surface
 - » <u>Heavy Sheen (HS)</u> Heavy colorful film with iridescence; stringy, spread is rapid; sheen flows off the sample; most of water surface may be covered with sheen
- Staining Visible brown or black staining on soil. Can be visible as mottling or in bands. Typically associated with fine-grained soils.
- Coating Visible brown or black oil coating soil grains. Typically associated with coarse-grained soils.
- Oil Wetted Visible brown or black oil wetting the soil sample. Oil appears as a liquid and is not held by soil grains. Soils oozing petroleum typically contain approximately 2 to 3 percent petroleum.

Designating Decision Units (DUs)

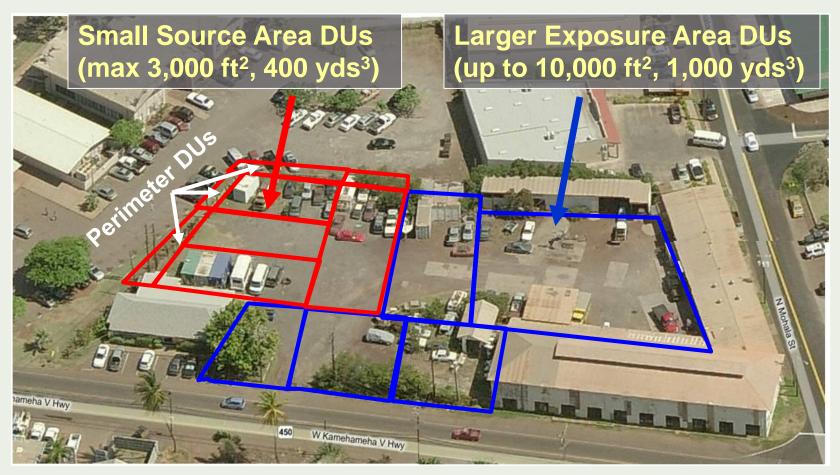
- This is the most important design element!
 - Should seek stakeholder consensus during planning, NOT after the data have come in.
- Information used to develop DU dimensions and locations:
 - Are there likely "hot" areas present? Size DUs as small remedial units probably needing cleanup
 - Historical site use & aerial photos
 - Existing sampling data
 - Interviews with current or former site workers
 - Exposure DUs (for determining exposure risk)
 - Size the DUs based on current and future site use

Size, Shape and Type of DU

Potential Hot Areas

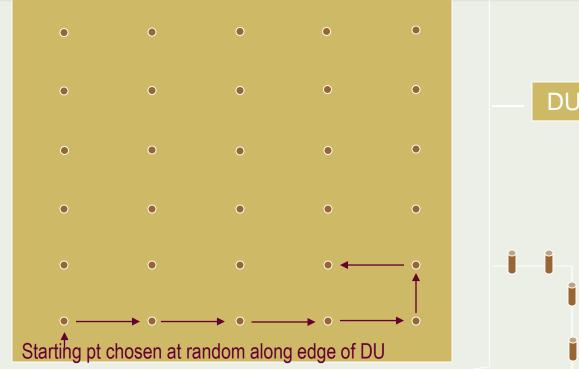
See ITRC, ISM-1 (www.itrcweb.org/ <u>ISM-1</u>) Section 3.3 and **ITRC ISM Internet Training** archives: http://www.cluin.org /live/archive/ and search for "incremental"

Former Power Plant Proposed as a Community Center



Primary objective is to identify and delineate source area and extent of contamination that exceeds action levels. 100′

Former Power Plant Decision Unit Designation

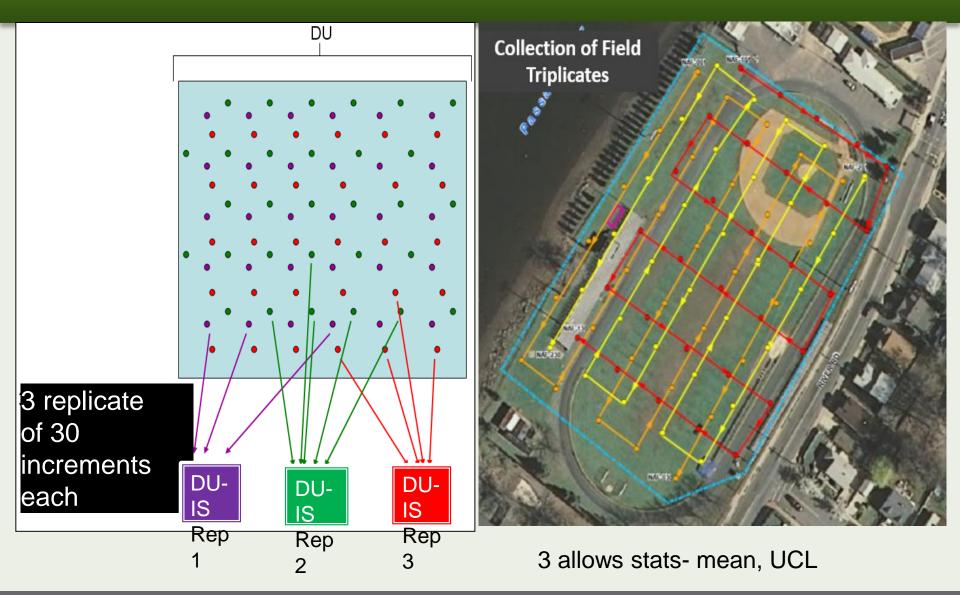


100'

Incremental Sampling Methodology (ISM)

Single incremental sample (IS) covers a decision unit (DU)

Definitive guidance is the ITRC ISM Tech Reg web doc



Single DU with 30 increments (happen to have a plug-shaped sample support) going into a single incremental sample (IS)

DU-IS

Replicate Incremental Samples


What About In Soil?

High Density, High/Low Resolution

- 44 grab samples (judgemental or random) collected for lab analysis.
- Sampling density of 15 samples per acre.

- Arsenical pesticide mixing area in Hawaii
- Residential redevelopement
- This parcel is 3 acres
- As cleanup level = 25 ppm

Results Mapped

Red line represents soil to removed 1' deep= 1650 yd^3

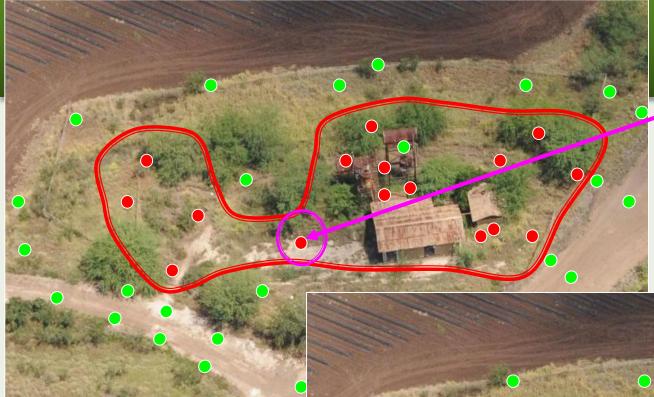
Dear Developer,

Please fund the removal and disposal of 1,650 yd³ of arsenic-contaminated soil. Oh, and by the way, there is about a 50:50 chance that this cleanup footprint is incorrect. The actual volume needing removal could be

- 1) more than this;
- 2) less than this; and/or

22

3) the footprint could be in the wrong place.



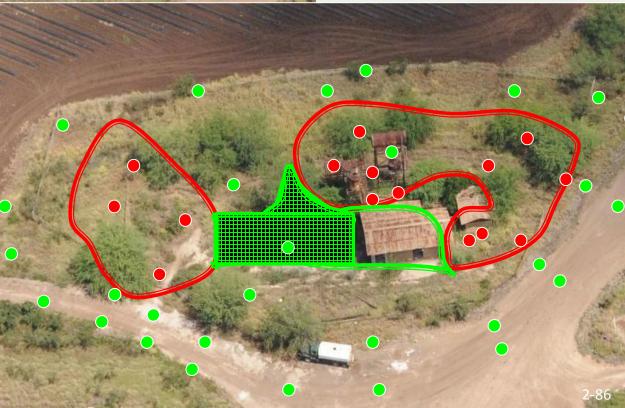
So, after confirmation sampling, I may be asking you for more money to do this all over again. But it will be the data's fault, not mine.

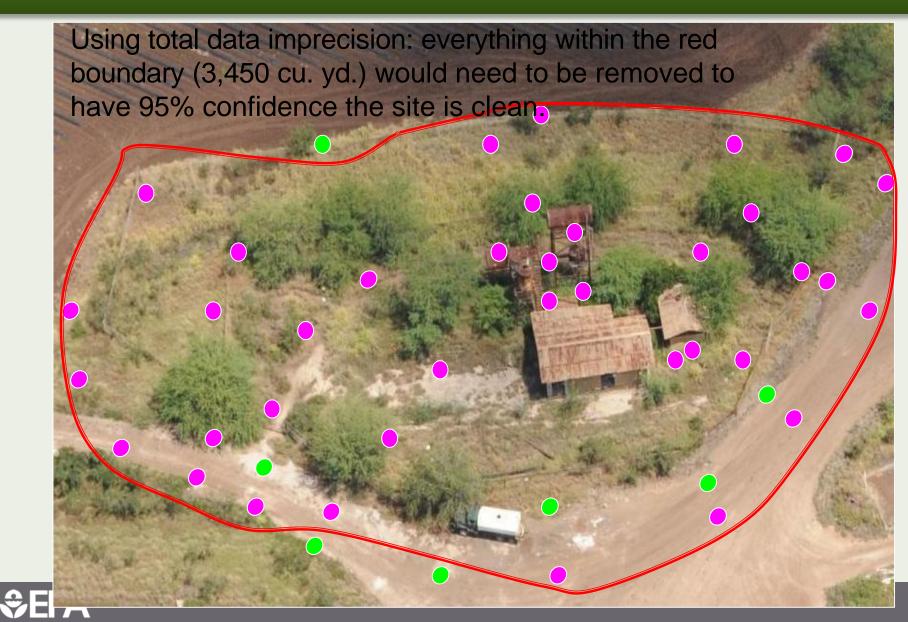
20

5 🔴

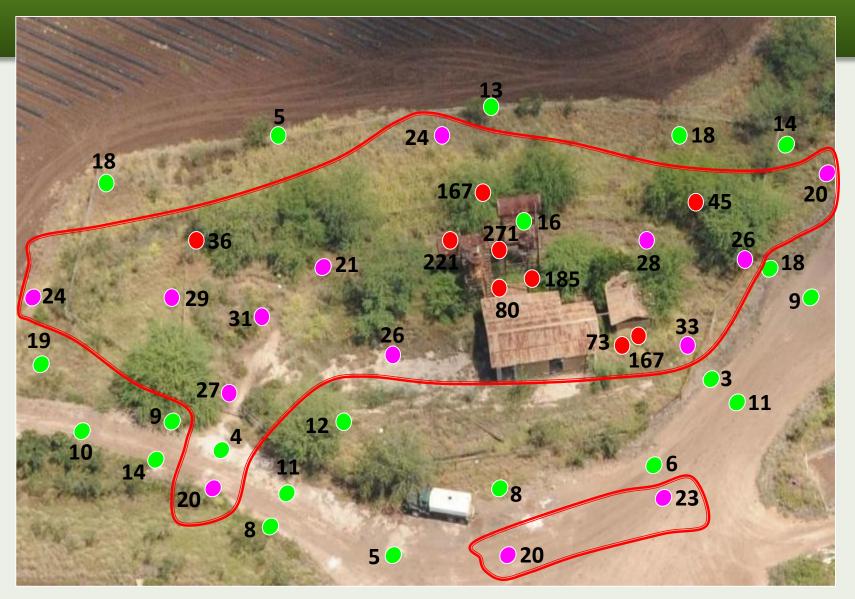
1st result of lab dup pair was 31 ppm 2nd result of lab dup pair was 17 ppm

The sample concentration is assumed to "represent" the concentration of about 4300 sq.ft. of soil (green)

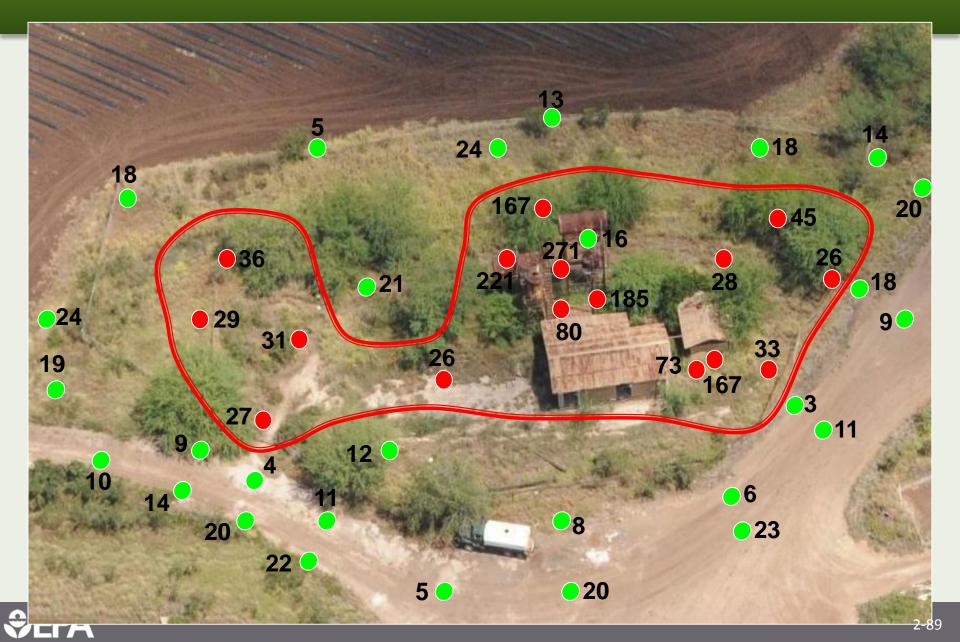



The sample concentration is assumed to "represent" the concentration of about 5800 sq.ft. of soil (green)

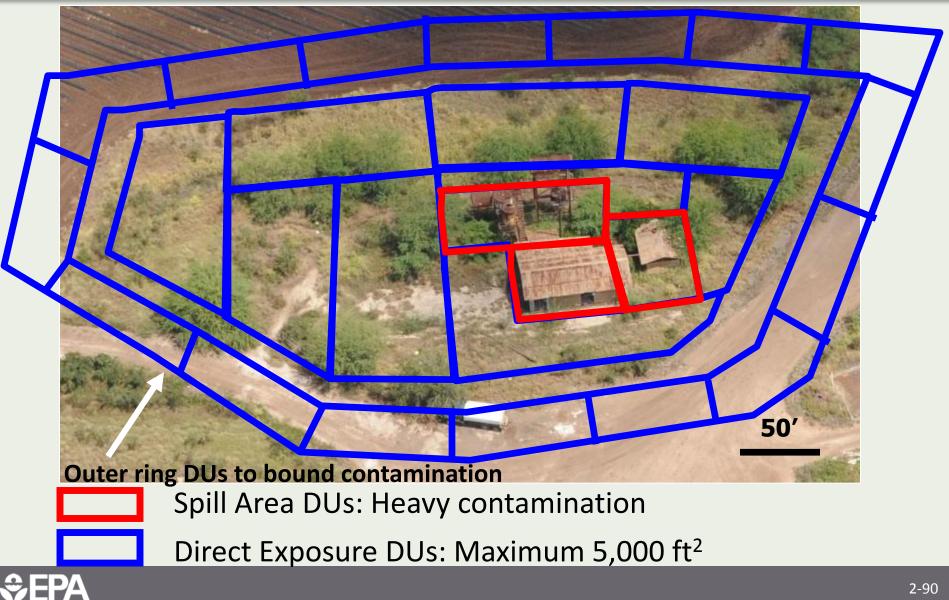
The sample concentration is assumed to "represent" the concentration of about 4300 sq.ft. of soil (green)

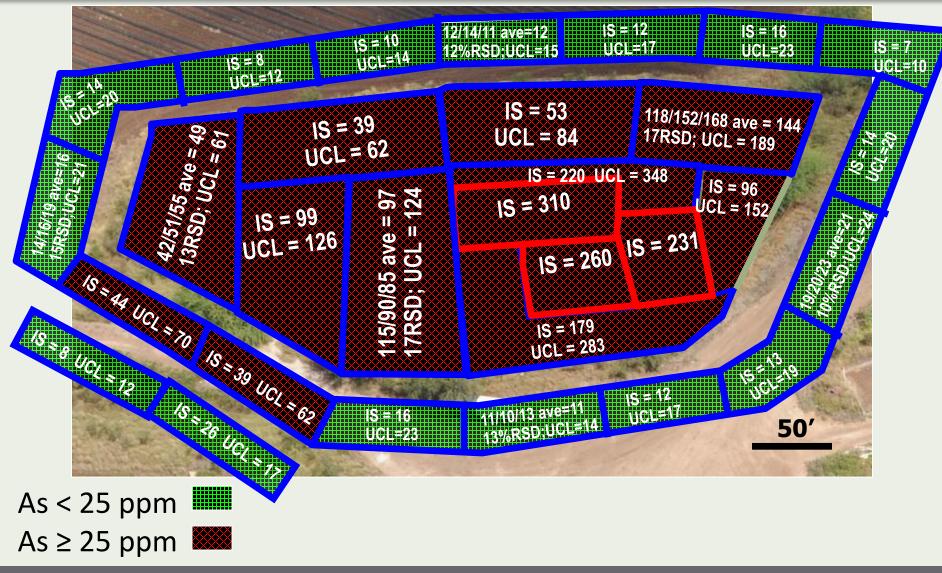


How Much Confidence Do You Need?



Settling for 75% decision confidence means removing only 2,650 cu. yd.



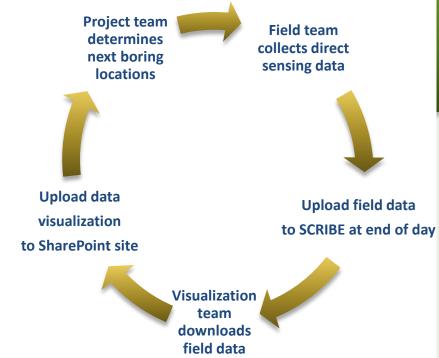

Or, again, you can flip a coin to decide whether this cleanup footprint (1,650 cu. yd.) is correct.

Decision Unit Designation for Incremental Sampling

Results

Putting It All Together *Real-Time Direct Sensing and CSM Updates*

- Forces data interpretation ... not just presentation
- Includes all site decision-makers in the process
 - Builds consensus; streamlines decision process


Saves time and expense

 Reduces repeat mobilizations; flags data collection errors immediately

Keeps focus on root causes, not symptoms

- High mass footprint (where to remediate)
- Matrix distribution (how to remediate)

Pushes the decision process forward

Conclusions

HRSC and Incremental Sampling Translated for Remedial Designs

In Groundwater

- Limit large scale averaging, use scale appropriate measurements
- Use transects and multi-level sampling
- Use direct sensing and collaborative data sets

In Soil

- Use incremental and compositing techniques to control matrix variability, reasonably represent exposure and decision units
- Many increments and replicate samples provide- good estimate of mean, and ability to calculate UCL/LCL and statistical confidence

Real-time CSM Updates/Data Visualization

- Forces interpretation not just presentation
- Includes all decision makers in the process- consensus, streamline
- Save time and money- fewer repeat mobilizations, early ID of data collection errors
- Keeps focus on root causes not symptoms- High mass footprint (where to remediate), Matrix distribution (how to remediate)

